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Line Graphs and Edge Coloring.
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Recap of previous lecture, we have discussed the elementary properties of Sub division

and Minor of a graph Kuratowski’s Theorem, Wagner’s Theorem and also proved Non-

planarity of Peterson Graph. Content of this lecture, we will discuss the Line Graphs and

how the line graphs are used in Edge-coloring and 1-factorizations of a graph.
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So, let us see the concept of Line Graph and we will use it for the Edge-coloring. So,

many questions about the vertices have analogies for the edges. Independent sets have no

adjacent vertices and matchings have no adjacent edges, so, analogs.

We have vertices and corresponding problem in the edges are also there with a different

name. If no vertices which are adjacent called independent sets; then for the matching no

edges are adjacent. Now, vertex coloring partitions the vertices into independent sets; we

can illustrate  partition the edges also into the matchings.  So,  these problems we can

relate via the line graphs. Here, we repeat the definition emphasizing our return to the

context in which the graphs may be may have the multiple edges. We use line graphs

because the edge graph is not a proper term.
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Now, let us see the Line Graph. Line Graph of a graph G is represented as L of G is a

simple graph whose vertices are the edges of that graph G with the edges of line graph is

nothing  but  when  the  edges  of  G,  they  are  meeting  at  a  common  point.  Take  this

particular example, if this is the graph G where we have labeled the edges with their

names. So, for every edge there will be a vertex in the Line Graph. Now, as far as a edge

in a line graph says that; whenever these 2 edges in the original graph are meeting for

example, d and e. So, they meet. So, they will form an edge in the line graph.

Similarly, d and f, they meet, so, d and f as an edge. Similarly, e and f meets, so, e and f

as an edge. Similarly, d and g they meet, so, d and g have an edge and f and h they meet.

So, f and h they have an edge. So, h and g they meet. So, h and g they have an edge and f

and g they also meet. So, f and g they have an edge. So, if we are given a graph g, we can

obtain the line graph of that particular graph using this concept.
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So, again we can take another example. In this example, we are given A graph. So, for a

we have an vertex, B we have a vertex, for E we have a vertex, for C we have a vertex

and for D we have a vertex. Now, A and B they are meeting, A and B they are meeting,

so, we place an edge. A and E they are meeting, we place an edge. A and C they are

meeting, we place an edge, then B and D they are meeting, B and C they are meeting, so,

we place an edge. B and D they are meeting, we place an edge. Now C and D they are

meeting, so, we place an edge.

Similarly, E and C they are meeting, so, we place an edge. So, this is called a Line Graph

of this particular graph.
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Now, the Edge-coloring problem arises when the objects being scheduled are the pairs of

the underlying elements. So, example of edge colorings of let us say k 2n. So, k 2n when

n is let  us say 2. So, this becomes k 2n graph. Now, re-bond a pair of objects  to be

considered  as  per  the  scheduling  of  a  game  is  concerned,  then  it  requires  an  edge

coloring not the vertex coloring. So, in the league of 2n teams, you want to schedule the

game, so that each pair of teams play a game, but each team plays at most once in a

week.

So, since team may must play 2n minus 1, others the season last at 2n minus 1 week. So,

the games of each week must form a matching, we can schedule the season in 2n minus

weeks if and only if we can partition this edges into 2n minus 1 matching, since k 2n is

2n minus 1 and regular, there must be a  perfect  matching.  So, we can see here that

having arranged the bipartite graph instead of that let  us add. So, this becomes k 2n

graph. So, k 2n graph if we take a particular team. So, how many because it is 2n minus

1 regular graph. So, it can have a pairing with all n minus 1 vertices. So, these edges will

pair.

Similarly, the other edges will also have such pairings. So, different pairings are basically

possible. So, we can partition these set of edges into 2n minus 1 different matchings and

how to obtain this matchings that is the pairings is called an Edge basically coloring. So,

when we obtain a pairing, so, there is a rule that if these 2 are selected then the remaining



pair; that means, this is one set of match when 1, 2, 3, 4 when 1 and 3 is one such of

matching and 2 and 4 is one matching. Second matching we can obtain as 1, 4 and 2, 3 is

another matching.

Similarly, we can have another matching like 1, 2 and 3, 4 n. So, this particular graph as

2n  minus  3  different  matchings  and  this  will  require  2n  minus  1,  so,  2n  minus  1

matchings. So, here 2n minus 1 comes out to be 3. So, 3 matchings we have obtained.

So, for that, you might have seen that the graph has to be a 2n minus 1 regular and it has

a perfect matching then only 2n minus 1 different matchings are possible.
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Therefore, let us see the definition of k edge coloring of a graph is the labeling of the

edges with the color set S, where the cardinality of axis k so; that means, applying k

different colors, we are placing the colors on these edges.

And k edge coloring is nothing but labeling or a function. So, the labels are the colors.

The edges of one color will form the color class, so k edge coloring is proper if the

incidence edges have different labels that is if each color class is a matching. So, let us

understand what is the proper coloring the incident edges have different labels, so, take

this particular graph. So, the incident edge on this particular vertex if this is having label

let us say red. So, the other edge will have another label why because, the incident edges

should  have  the  different  labels  for  a  proper.  So,  it  is  a  proper  2  colorings  2  edge

colorings.



So, a graph is k-edge-colorable if it has proper k edge colorings. The edge chromatic that

is, chi prime G of a loop less graph is the least value of k such that the graph is k-edge-

coloring. Example of edge-coloring a complete graph is basically shown over here.
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Now, we call the edge chromatic number also as the chromatic index. So, chi prime G is

called chromatic index, since the edges sharing a vertex need different colors. Therefore,

this bound on this edge chromatic number that is chi prime G is at least the maximum

degree of a particular graph. Vizing and Gupta independently proved that delta G plus 1

colors suffice when the graph is simple.

So, we will see that what are the conditions when the edge chromatic number of the

graph that is the chi prime G is at least delta and whatever the conditions as per as Vizing

and Gupta Theorem that  this  particular  chromatic  index will  become delta  G plus 1.

Now, a clique in the line graph in the set of pair wise intersecting edges of G; because the

vertices are representing the edges of graph G. So, there is a clique in line graph; this

means, there is a set of pair wise intersecting edges of a graph. When G is simple, such

edges form the star or a triangle in particular G for the hereditary class of line graph of a

simple graph Vizing Theorem states that chi prime edge is less than or equal to omega h

plus 1. Thus, the line graphs are almost perfect.



In contrast to chi G, multiple edges is greatly affect the chi prime G that is chromatic

index. So, graph with a loop as no proper edge-coloring. So, that is important point to be

noted.
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Hence, the loop less will be excluded here, but multiple edges are allowed in the edge-

coloring. So, multiplicity multiple edges mean between 2 vertices multiple edges can be

there and how many edges are there that is called multiplicity. So, in a graph G with

multiple edges, we say a vertex pair x, y is an edge of a multiplicity m if there are m

different edges with the end points x and y.

So, here let us say there are m. So, hence the multiplicity of m will be there. Now, we

write of mu of x y for multiplicity of a pair and we write down mu G for the maximum

of the edge multiplicities in the graph. So, this kind of structure where multiplicities of

where multiplicity of a graph or the multiplicity of the pair are allowed and this is called

a Fat Triangle.
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Now, there is a theorem which is given by Konig, which states that if the graph G is

bipartite, then chi prime G is equal to delta G.

So, let us see the proof corollary which is stated in the previous videos, 3.1.13 states that,

that is the Halls Theorem states that, every regular bipartite graph H has one factor. So, it

is a it is a Halls Theorem about matching. So, one factor is nothing but a matching, so,

every regular bipartite graph H as one factor. So, by induction on big delta of H, this

yields a proper delta H edge colorings if therefore, suffices to show every bipartite graph

G with  a  maximum degree  k,  there  is  a  regular  k  bipartite  graph containing  G.  To

construct such a graph, we add the vertices to a smaller partite set of part G if necessary

to equalize the sizes.

If the resulting graph G prime is not regular, then each partite set vertices less then that

degree k at that edge and thus make it s k-regular. For a regular graph G, the proper

edge-coloring with big delta G colors is equivalent to decomposition into one factor let

us see through an example. So, let us say that this is the graph which is given a bipartite.

Now, here one vertex is missing, we can add that vertex to a smaller partite set this is a

smaller partite set, we have added one vertex to equalize the sizes. Now, if this particular

G prime is not regular, then we will place an edge these edges are added extra and hence

these becomes 2 regular or let us say it is a k regular graph.



Now, having obtained;  that  means,  given any such partite  graph,  we can  obtain  a  k

regular graph by these sort of operations by adding vertices and by adding edges having

done that? Now, you know that the big delta G of this particular graph is 2. So, we can

obtain an edge coloring with that most big delta G colors. So, let us say that if these edge

in color, then we cannot color the other edge which are incident on these vertices with

the same color. So, the other 2 vertices which need to be colored the other 2 vertices will

require the same color, which are not same.

Now, the remaining edges require another color. So, hence we are using a green color.

So,  the  remaining  edges  we  can  apply  the  green  color.  So,  every  vertex  which  is

incidence having the edges of different colors. How many colors? That is big delta G the

colors will be required. Let us read again. So, corollary 3.1.13 it states that, every regular

bipartite graph as one factor. So, that is basically the perfect matching if the graph is

regular bipartite graph. Now, by the induction on big delta of this particular graph this

yields proper delta edge edge-colorings. So, we have shown that and we have also shown

through these particular  steps that,  if  the graph is not k regular, we can obtain it  by

adding the vertices or adding the edges.

So, hence this chronic, we have seen the theorem that if graph G is bipartite, then chi

prime G is equal to big delta G that is for bipartite graphs. So, for bipartite graph, this

particular bound holds according to the Chronic Theorem.

(Refer Slide Time: 18:29)



Let us see 1-factorization is nothing but the matchings the decomposition of a regular

graph into the 1-factor is the 1-factorizations of a graph G. So, graph with 1-factorization

is called 1-factorable. So, an odd cycle is not 1-factorable. So, take an odd cycle, this is

C 5 it is a odd cycle it is not 1-factorable; why because, if you can select this edge, then

this edge cannot be selected this edge if it is selected this vertex will be unsaturated.

Hence this is not the perfect matching. Hence, it is not 1-factorable. Similarly, if an even

cycle if we can take, so we can factorize, we can obtain the 1-factor in the following way.

So, this is these are all called 1 factors of this particular graph 1, 2, 3, 4. There is another

one factor, you can obtain between 1, 3 and 2, 4. So, this is 1 factorable. So, the Petersen

graph also requires an extra color, but only one extra color that is important point to note.

So, that means, the Petersen graph is 3-regular, but it requires how many colors chi prime

of Petersen is equal to 4; that means, it requires big delta G is equal to 3 plus 1 more. So,

Petersen graph is an example where chi prime G becomes plus 1.

(Refer Slide Time: 21:01)

So,  Petersen graph is  4-edge-chromatic.  So,  Petersen graph is  3-regular  3-edge-color

ability  requires  1-factorizations  deleting  a  perfect  matching  leaves  2  factors,  all

components are cycle. Here, we can see if you delete it, this is a perfect matching. So, we

will obtain 2 different cycles, which I will show you through this is 1-cycles C 5 and this

is another cycle. So, 2 cycles 2C 5 cycles, we will obtain. All components cycles the 1-

factorizations can be completed only if these are all even cycles. Thus, it suffices to show



every 2-factor is isomorphic to 2C 5. So, here we have seen that consider the drawings of

2C 5 and a matching.

The cross edges between them we consider the cases by the number of cross edges are

used.
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So, every cycle uses an even number of cross edges. So, a 2-factor-edge has an even

number m of cross edges. If m is equal to 0, then H is equal to then H is equal to 2C 5.

Now, when m is equal to 2, so, here we can see this is 1 and 2 then the 2-cross-edges

have non-adjacent end points on the inner circle or the outer circle. On the cycle where

their end points are non-adjacent, the remaining 3 vertices 4 or 5-edges of that cycle into

edge which violates the 2-factor requirements. So, when m is equal to 4 1, 2, 3, 4, then

the cycle edges forced into H by unused cross edge form a 2ps, this is one p and this is

another p whose only completion to 2 factor in H is 2cs. Note that, since c 5 has 3-edge-

colorable the graph is 4-edge-colorable.
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Vizing’s theorem, Vizing and Gupta has given a theorem which says that, if G is a simple

graph, then chi prime G is less than or equal to big delta G plus 1. Big delta G means, the

max degree of particular graph is 1. Now, if we correlate with the previous discussion

that we have seen that bipartite graph is having chi prime G equal to big delta that also is

included in to it. So, with this, we include the definition; a simple graph G is class 1, if

chi prime G is equal to big delta. It is called class 2, if chi prime G is equal to big delta G

plus 1. So, the example here is a bipartite graph by Konig’s theorem, we have seen this

and this becomes valid for a Petersen graph.

Hence,  the  bipartite  graph  is  class  1  graph  and  Petersen’s  graph  is  class  2  graph.

Determining whether a graph is class 1 or class 2 is generally hard. Thus, we seek the

condition that orbit or guarantees big delta G-edge-colorability.
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So, conclusion; in this lecture, we have discussed the characterization of a Line Graphs,

Edge-colorings, Chromatic Index, Multiplicity and 1-factorizations.

Thank you.


