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Counting proper colorings.
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Recap of previous lecture, we have discussed the Brook’s theorem and some properties

of  critical  graphs.  Content  of  this  lecture  we will  discuss  the  properties  of  counting

function is also known as enumeration of the colorings in a graph. We will also see the

chromatic  polynomial,  chromatic  recurrence  and other  further  important  enumerative

aspects of coloring.
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So, the chromatic number chi of G is the minimum k such that the count is positive. Now

knowing the count for all k would tell us the chromatic number; the counting problem

was also used to tackle the 4 color theorem. This lecture we will discuss the properties of

a counting function and the classes where it is easy to compute and other related topics.

(Refer Slide Time: 01:14)

So, counting proper coloring is represented by a notation which is basically chi of G and

another parameter that is called k; k is you will explain k ok. So, k is any natural number

and a given graph G the value the chi of G k is the number of proper colorings. So, you

know that proper coloring is represented by a function f which will label the vertices

from the set of label that is the k set of labels are given, these labels are called colors



because the values are not important

So, the setup available colors is k; we can represent either them in the form of labels 1 to

k or we can also say that the different colors. So, the k colors need not all be used in the

coloring using this particular mapping function f. So, changing the names of the color

that  are used will  produce different colorings.  So,  we have to count how many such

different colorings are possible? We are using this particular notation that is chi of G

comma k and that is nothing, but enumeration the colorings possible with k different

colors in a given graph G.

(Refer Slide Time: 02:59)

Let  us  consider  an example  in  this  example;  we will  consider  a  graph which  is  the

complement of a complete graph. So, if the complete graph is k 3 complement graph will

look like this  way that  3 nodes are  there.  So,  complement  means in  the may in the

complete graph they have an edge in a complement of that particular graph they do not

have any edge although only the nodes will be present

Now, if you are given color k different colors. So, let us see that a particular node we can

choose any one of these k colors. So, there are k possibilities to color the vertex number

1. The second vertex is not connected; so, again we can pick any of these k colors and

there are k possibilities to color the second node. Third node is concerned also it will

basically a require any of the k colors; so, third node.



So, if there are n nodes. So, all the nodes will receive the same color; so, total number of

colors is nothing, but the multiplication of K n times. So, the chi value of complement of

a complete graph with k different colors the complete graph with n nodes will have k

raised to the power n different chi value

Another example of this counting is. So, if you are given if you are given a complete

graph let us say here the n is 3. So, we are given k 3 and we are also given the number of

colors as k. So, we want to find out the total number of possible proper k colorings. So,

the let us take the first vertex; so, since we are given k different colors none of them are

already used. So, the first vertex will be colored using any of these k or k different ways

Now, having utilised  the one color  the remaining will  be k minus 1 different  colors

available. So, the second vertex can be colored with the remaining k minus 1 different

ways. So, having used another color; so, the remaining colors will be k minus 2. So, the

third vertex can be colored with these k minus 2 different colors; so, there are k minus 2

different ways.

Hence the chi value is represented; so, there are n nodes. So, k minus n plus 1 will be

that particular result. Now when; so, this will tell these are the number of ways to color a

an vertex graph with k colors. Now before we go ahead let us see another important

thing.

Now, if we give a less number of colors and with that less number of colors the proper

coloring is not possible what will be that particular value. So, let us take k 2 complete

graph of two vertices and we are given only one color. So, if we use one color the second

color; if we try to use then it will not be a proper way because the other vertex is the

adjacent vertex and it has to basically cannot use the color which is already given to its to

its neighbour.

Another  color  is  required.  So,  chi  value  of  k  2 with one  color  will  become 0;  why

because of the there is no proper coloring. Now if we increase the number of colors by

one more that is 2; then let us see how many ways we can color it. So, it is one color and

the other color we are going to give it to the other one and vice versa.

Similarly, if you are having; so, let us plug it this particular formula here. So, k into k

minus 1; so, k is 2 into 1 that becomes 2; so, hence two colors are required. Now k 2; if it



is having 3 colors, then what will happen? So, the first vertex we can color with; so, that

becomes k; k minus 1. So, k is 3 into 2 that is 6 different ways we can color if the

number of colors are more that is 3.

So, this is important that if the number of colors is less than the minimum required colors

then; obviously, the chi value a will become 0. So, when coloring the vertices of K n

complement we can use any of the k colors at each vertex no matter what color we have

used at other vertex hence since each of these K n functions from the vertex at two K n is

a proper coloring hence we have already told.

Now, when we color the vertices of K n; the colors chosen earlier cannot be used on the

ith vertex. So, the remain there remains k minus i plus one choices for coloring the ith

vertices; no matter how the earlier colors have been chosen hence this particular formula

we have already derived.
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Now, we can count this also k chosen and factorial n means there are different if we

change the names of the colors then we can obtain different orderings

So, hence this is the number of this to assign the colors; now we have already seen that if

there are 3 different colors, then the first vertex is colored with three. So, we can apply

this particular formula that K chosen n is 3. So, 3 chose 3 times 3 factorial; so, 3 factorial

this becomes 1; so, 3 factorial is 6.



Similarly, 4 choose 3 and 3 factorial. So, this becomes 24; the value of the product is 0

when k is less than n that is the number of colors k is less than. And this makes sense

since k has no proper colorings when k is less than n for the complete graphs.

(Refer Slide Time: 11:07)

Now proposition; if T is a tree with n vertices then chi of T with k is equal to k times k

minus 1 to the power n minus 1. Now let see the proof and then we will see the example

proof says that choose some vertex V of a tree as a root, we can color V in k different

ways. If we extend the proper coloring to the new vertices as we grow the tree from V

root at each step only the colors of the parent is forbidden and we can we have k minus 1

choices for the colors of a new vertex.

So, having color this particular root when it comes to the descendant, we can color with

the remaining k minus 1 colors. Similarly to this also to this also now when we go to the

next level here also we cannot use this color; so, the remaining is k minus 1, so, k minus

1 k minus 1.

So, if a tree with n nodes is given; so, the first node we can color with k different base

having used one of these colors at the root; in the next level can be colored with k minus

1 and if there are n different such nodes afterward. So, this will be the total number of

ways we can color a tree of n nodes with k different colors.

Let us take a example ; let us take this particular tree. So, here n is equal to 6 and let us



say that number of colors are given k is equal to 2. So, first we can color with the number

of colors; now then we can use the other level with a different color cannot use red then

red again we can use here. So, we require another color; so, next level we can use this

particular color. So, two colors will basically color them.

Let us see the formula. So, the first vertex 2 times, second is 2 minus 1 becomes 1 times

n minus 1 that is 5 that becomes 2. So, this is this particular tree T with 2 colors only

there are two ways. Now if the number of colors is equal to 3; let us see how many ways

will be there. So, the root node we can color with 3 ways and the remaining nodes that is

n minus 1 different remaining nodes can be colored with other two ways.

So, how what is the value of n here? n is 6 minus 2 that becomes 4; 2 raised to power 4,

3 multiplied by 2 raised power 4. So, that will be the result here in this particular.
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Now, we see the chromatic polynomial; chromatic polynomial is another way to count

the  colorings  and  is  to  observe  that  the  color  classes  of  each  proper  coloring  of  G

partitions vertices of a graph into independent sets

Grouping the colorings according to the partition will lead to a formula for chi of G with

k coloring; that this polynomial in k of degree n. Note that this holds for the answers in

the examples which we are seen earlier, since every graph has this particular property as

a function of k is called the chromatic polynomial of.
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Let us see the proposition let x is equal to x x minus 1 and so, on up to x minus r plus 1

and  let  p  r  denotes  the  number  of  partitions  of  the  vertex  vertices  into  r  nonempty

independent sets. Then chi of G with k is nothing, but the summation of summation from

r to n pr times k r which is the polynomial in k of degree n.

Let us see this and we will take an example to show this particular polynomial; now

when r colors are actually used in proper colorings the color classes partition vertices of

G into exactly r independent sets which can happen in pr G ways when k colors are

available there are exactly kr ways to choose the colors and assign them to the classes all

proper colorings arise in this way; so, the formula is correct.

Now, k r is the polynomial in k and p r G is the constant for each r this formula implies

that that chi of G with k is a polynomial function of k; when G has n vertices there is

exactly one partition of G into n independent sets and no partition using more than that

set lead to the value leading value is k raised power n.
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Always pn is equal to 1 using the independent set of size 1. So, p 1 G is equal to 0 unless

G has no edges; since only for K n complement is the entire vertex set is an independent

set.

Let  us  consider  when  graph  is  C  4;  now  there  is  exactly  one  partition  into  two

independent  sets.  This  is  one  independent  set  this  is  another  independent  set.  So,

independent set will have this is the partition one, this is another partition. So, let us see

that a b c d; so, one is a d the other partition will contain b c; so, it has only one partition.

So, opposite vertices will be in the same set; when r is equal to when; so, this particular

when r is equal to 2. Now when r is equal to 3 r ways number of independent sets are 3;

so now, we can see 3 independent sets means this is one independent, one independent

set second one and this is third one; so, a b; then and d

So, when r is equal to 3 the independent sets will be a c then b and then d. So, we put two

opposite vertices together here we have shown you and leave the other two sets in the set

by themselves that we have done. So, we can do this in two different ways; so, two

different ways means either this way or the other way. So, the total number of ways to do

these kind of partitioning, when the independent sets size is 2; there is only one way of

doing it when independent set of size 3; we have seen here there are two ways where

independent set of size 4; 4 four means all are isolated.

Now, let us see the polynomial according to the previous relation. So, when independent

set of size when independent set of size 1 is there independent set of size 2; there are one



way. So, 1 into there are k ways to color one independent set. So, having chosen that

color we cannot use that color the same color. So, the remaining colors will be k minus 1

and we can color to the set independent set. When the total number of independent sets

are 3; so, there are two ways to do this and let us count how many colors? How many

ways we can color these 3 independent sets

So, the first independent set we can color with k having utilise one color, the second

independent set will be k minus 1, third is k minus 2. When the independent set is of size

4  then  basically  only  one  way is  possible  only  one;  we can  have.  Now let  see  the

colorings of 4 different independent sets k k minus 1, k minus 2 and k minus 3.

So, if we solve this particular equation comes out to be which is shown over here.

(Refer Slide Time: 21:28)

Now, computing the chromatic polynomial in this way is not generally feasible; since

there are too many partitions to consider. So, there is a recursive computation much like

that  used  in  the  in  the  counting  of  trees.  Again  we have  to  see  the  background for

building it that G dot e is the representation for a graph, which is obtained by contracting

an edge e. So, if this is the graph which is called a kite having this particular edge. So, G

with  this  edge  is  contracted  when  edge  is  contracted  that  becomes  that  becomes  a

particular vertex where this edge will not be present, but these edges will be present. So,

that becomes an graph



Since the number of proper k colorings is unaffected by multiple edges; you may discard

the multiple copies of an edge hence this becomes the graph keeping only one copy to

form this kind of graph.

(Refer Slide Time: 22:50)

So, with this particular introduction of the contraction operation in the graph of an edge

given edge e; we now define a theorem which will give you the chromatic recurrence; so,

chromatic recurrence theorem.

So, if G is a simple graph and e is an edge in the edge set of that particular graph; then

the chromatic value G for different colors is equal to chromatic number of G without that

edge with k different colors minus chromatic number of G contracted an edge e with k

different colors. So, the proof will give you the idea let us see this particular proof.

Now, every proper k coloring of a graph is a proper k coloring of G minus e that is the

graph without that edge; a proper k coloring of G minus e is a proper k coloring of a

graph if and only distinct colorings to the endpoints of v. Hence we can count the proper

k colorings of G by subtracting from G minus e with k the number of proper k colorings

of G minus e that gives u and v the same color.

Now, colorings of G minus e in which u and v have the same color correspond directly to

the proper k coloring of G contraction e in which the color of the contracted vertex is the

common color of u and v such a property such a coloring properly colors all the edges of



G minus e if and only if  it  properly colors all  the edges of G let  us understand this

concept.

Now, if  this  particular  graph is  given then  if  you remove this  particular  edge,  these

vertices if they have the different colors then that many number of ways in which they

are different that is to be subtracted. So, again why because let us see that if there is an

edge then basically this will receive different a colors; one is let us say blue, green the

other is another color let us say purple.

Now, if we remove this particular edge, if you remove this edge, if you remove this edge

then there is no need of different colors. So, may be that we can use the same color in

this particular graph. So, we have to find out the graph without this edge which is having

the different colors that is to be calculated and removed from it. So, again I am repeating

the proof; so, that will be indicated over here. So, every proper k coloring of a of graph G

is a proper k coloring of G minus a G minus e.

So, if k colors are used here in G minus e and if the edge is not present then basically if

the edge is removed; then basically the number of colors are going be reduced. So, the

proper k coloring of G minus e is a proper k coloring of G; if and only if it  gives a

distinct  colors to the endpoints. Hence we can count the proper k colorings of G by

subtracting from G minus e with k colors; the number of proper k colorings of G minus e

that gives d and e the same color. So, here we have to remove this many number of

colorings which give the same color to u and v vertices for that you will do the edge

contraction hence this particular formula is derived.
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Now let us see how many colors C 4 produces with k using this particular formula. So, C

4 is this one; so, this C 4 we can if we can remove this particular edge; this will become

C 4, this will become P 4, C 4 minus 1 edge is P 4 proper k coloring of P 4 wherein both

are basically having the same color is to be removed; if we want a proper k coloring of G

minus e.

So, that becomes that if we contract that particular edge; if we contract that edge that

becomes a vertex and that is nothing, but the triangle. So, chi of G with with k colors is

chi of this vertex with k colors minus why because then it will reduce the number of

colors. So, how many cases where both are getting the same color is to be removed.

Now, you know that what is the value of path P 3; with k colors is nothing but first

vertex; so, it  is nothing, but a tree. So, tree will  say that k times k times how many

remaining is 4 minus 1 that is 3 minus as far as this is concerned triangle. So, the triangle

will require like the complete graph; so, k then k minus 1 , then k minus 2 and if you

solve this particular equation k into k minus 1 that is k minus 1 is square minus k minus

2. So, that becomes 3 and this becomes minus 3 k, minus 2 k and minus 2 k and this

becomes k square. So, hence this particular equation we have derived.

Now, because both G minus e and G contraction e have fewer edges than G; we can use

the chromatic recurrence to compute G k way we. So, we need initial conditions for the

graph with no edges which we have already computed here in this case.
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So, theorem Whitney in 1933 has given a theorem called chromatic polynomial theorem;

the chromatic polynomial chi of G with k of a simple graph G has a degree n G has a

degree n G with integer coefficients alternating in sign and beginning 1 minus e then plus

and so, on.

Let us see the proof of chromatic polynomial. So, we use the induction on the number of

edges on the edges of a graph. So, the claim holds trivially when the edges present in the

graph is properties equal to 0. So, if there are no edges then this particular recurrence is

basically nothing, but the complement of K n with k that is nothing k raised to the power

n.

For induction step let G be an n vertex graph with e G is greater than or equal to 0; now

each of G minus e and G contraction, you have your edges then G and G contraction e

has n minus 1 vertices by the induction hypothesis, there are nonnegative integers a i and

bi such that the chromatic polynomial of G minus e with k is equal to the summation of i

which is running from 0 to n minus 1 raised power i; a i times k with the power n minus i

and G contraction e with k that chi value is equal to summation of i is equal to 0 to n

minus 1 with minus 1 raised power i; b i times K n minus 1 minus i.
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So, by chromatic recurrence both these equations we will see that chi of G with k is

equal to chi of G minus e with k minus chi of G contraction e with k. Now let us see

these in turn that is nothing, but k raised power n times e G minus 1, minus e G minus 1

times K n minus 1 plus a 2 K n minus 2 and so, on; i minus 1 to raised power i; a i and k

raised power n minus i that we have seen in the previous slide.

Now, another there is a term for edge contraction has to be suspected; now you know that

with edge contraction, the number of nodes will be n minus 1. So, here for nth node there

will not be any polynomial leading term. So, the leading term will start with n minus 1 k

raised power n minus 1 minus b 1 times K n minus 2 plus and so, on up to i minus minus

1 raised to the power i minus 1 times bi minus 1 times K n raised power k raised to the

power n minus i.

So, if we subtract both the recurrence equation 1 and equation 2. So, 1 minus 2 you will

get  the  recurrence  for  our  desired  formula.  So,  K  n  will  come  over  here  and  this

particular term both factor will be incorporated. So, here it is minus 1 and plus 1; so, that

becomes e G. So, this term these terms are verified similarly we can include a 2 and so,

minus and minus they will becomes plus and so, on.

So, finally, minus i and this is a i plus b i. So, this will be basically taken care of minus

and minus; they will become plus. So, hence chi of G comma G with k is a polynomial

with a leading coefficients a 0 is equal to 1 here. And the next coefficient is basically

minus a 1 and plus b 2 that is nothing, but minus e G that is present and its coefficients



alternates in the minus sign. So, 1 minus e then basically then again it will be plus 1 and

then  again  it  will  minus  and so,  on.  So,  these  signs  will  alternate  in  this  particular

manner.
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So, when adding an edge yields a graph whose chromatic polynomial is easy to compute

we can use the chromatic recurrence in a different way; instead of saying that G k is

equal to G minus e with k. And subtracting with G contraction e, we can write down

instead of that that G minus e is equal to; that means, this term we basically put on the

right side that becomes both plus.

Now, this  you know that  this  way also we can compute;  let  us see that  we want to

compute this K n minus ; this is K n minus e that is this e is present e is absent. So, let us

include it and we will form this particular recurrence; similarly here with contraction this

is K n minus 1. So, we can solve this particular recurrence why because we know that

this is easier to produce; this is also easier to produce and hence this is another example

how we can instead of saying that an edges to be removed rather than we can say that

edges added and the contraction operation.
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So, we close our discussion of chi of G comma k that is the number of enumeration of

the  colorings  of  a  graph  G  with  given  connected  with  an  explicit  formula;  it  has

exponentially many terms. So, its uses are primarily theoretical the formula summarizes

what happens if we iterate the chromatic recurrence until we dispose of all the edges.
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So, there is another theorem given by Whitney in 1932; let c of G denote the number of

components of a graph G now given a set S which is a subset of the edges of G of edges

n G; let G of S denotes the spanning sub-graph of G with the edge set S; then the number

that is chi of G with k of the proper k colorings of G is given by this particular equation

that is nothing, but the summation of the sub subsets of S of edges with minus 1 raised to



the power that subset S times k raised to the power c that is number of components in

subset of in a spanning sub-graph with S.

So, in the proof if we see that in applying the chromatic  recurrence contraction may

produce multiple edges; we have observed the dropping these does not affect the chi of G

with k we claimed that deleting extra copies of the edges does not change.
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The claim formula let e and e prime be the edges in G with the same endpoints; when e

prime is in S and e is not in S we give that number of components of G S union e is equal

to  number  of  components  with  S;  since  both  the  endpoints  of  e  are  in  the  same

component; however, S union e is nothing, but the cardinality of S plus 1 thus the terms

of S and S union e in the sum cancel.

Therefore, vomiting all the terms for the set of edges containing e prime does not change

the sum this implies that we can keep or drop from the graphs without changing the

formula. When computing the chromatic recurrence we therefore, obtain the same result

if  we do not discard multiple  edges or the loops and instead retain all  the edges for

contraction or deletion iterating the recurrence; now yields 2 raised power e time e terms

as you dispose of all the edges each in turn is deleted or contracted.
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When all the edges have been deleted or contracted the graph that remains consist of an

isolated vertices; let S be the set of edges that were contracted the remaining vertices

correspond to the components of G S, each such component become one vertex when the

graph of S are contracted on the other edges are deleted. Let c of G S isolated vertices at

the yields a term with k raised power number of components of G S colorings.

Furthermore  the  sign  of  the  contribution  changes  for  each  contracted  edge.  So,  the

contribution is positive if and only if the cardinality of S is even thus the contribution

when S is the set of contracted edges is minus 1 to the power cardinality of S times k to

the  power  number  of  components  of  G  with  the  spanning  sub-graph  of  S  and  this

accounts all the terms in sum.
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So, let us take example of a chromatic polynomial when G is a simple graph with n

vertices every spanning sub-graph with 0 one or two edges has n n minus 1 and n minus

2 components respectively. When S is equal to 3 the number of components is n minus 2;

if and only if the 3 edges for a triangle otherwise it is n minus 3.

For example when G is a kite with 4 vertices and 5 edges that is shown in the diagram;

there are 10 sets of 3 edges for two of these G S consist of a triangle plus one isolated

vertex the other 8 sets of 3 edges yield spanning sub-graph with one component both

types of triples are counted negatively; since S cardinality is 3 all spanning sub-graph

with 4 or 5 edges have only one component. Hence the theorem yields k raised power 4

for this particular graph k raised to the power 4 minus 5 times k raised to the power 3

plus 10 times k square and so, on.

So, if that gives the same formula that we have earlier proved. So, this agrees with the

earlier stated computation method by counting different coloring directly without using

this particular formula by using this particular way.
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So, basically we can see that chromatic polynomial is a direct method of application

without  doing  all  enumeration  steps  in  between  Whitney  proved  an  theorem  using

inclusion  exclusion  principle  of  elementary  counting.  So,  letting  A i  be the  set  of  k

colorings assigning the k color to the endpoints of e i we want to count the colorings that

lie in none of these A 1 to A m.
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So,  this  lecture  we  have  discussed  the  properties  of  counting  function,  chromatic

polynomial, chromatic recurrence and theorems based on these issues.

Thank you.


