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Recap  of  previous  lecture  we have  discussed  k-coloring  of  graph,  optimal  coloring,

clique number, Cartesian product of a graph, upper bounds in terms of colorings that is

upper bounds of greedy coloring algorithm.

Then we have also cover the greedy coloring when the graph is interval graph and such

kind  of  graphs  basically  arises  in  the  problems  of  register  allocation  application  in

compiler design.

Content of this lecture this lecture we will discuss the Brooks’s theorem which will give

the bound on the chromatic number of a graph and you will see the proofs of it then we

will  also look into the k critical  graphs. So, k critical  graph here means that k color

critical graphs.
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Brook’s theorem let us see the background of the Brooks’s theorem before we state this

particular theorem.

The bound of a chromatic number in a graph is given by 1 plus maximum degree of a

graph. Now this particular bound we have earlier stated. So, let us see that what are the

graphs when this bound will become equal so that equality will hold for the complete

graphs and the odd cycles.

So, for complete graphs an odd cycles chi of G is less than or equal to 1 plus maximum

degree  of  a  graph for  complete  graphs  and odd cycle  so  this  is  one point.  Now by

choosing the vertex ordering by carefully we can show that these are essentially the only

such graphs where this equality in this particular bound will hold. If the graph is this

implies  for  example,  the  Petersen  graph  is  3-colourable,  without  finding  explicit

coloring.

To avoid unimportant complications we state that the graphs are connected graphs for

disconnected  we  can  also  extend  it  for  finding  out  the  chromatic  number  of  the

components and take the maximum of it that becomes. So, without loss of generality we

will consider only the cases for connected graphs.

So, it extends to all the graphs because chromatic number of a graph is the minimum or a

maximum chromatic number of its components so that I have already stated. We will see



the proof by brook of the Brook’s Theorem by given by Lovasz in 1975.
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So, the Brooks theorem is stated as under which is given in 1941 and the proof will give

by Lovasz in 1975. So, if graph G is connected graph other than the complete an odd

cycle for complete an odd cycle this  chi of G is 1 plus for complete  graph and odd

cycles.

So, if the graph is not complete other than the complete graph then the Brooks theorems

says that the chromatic number of a graph G is less than or equal to the maximum degree

of a graph. Let us see the proof given by Lovasz, let G be a connected graph and this

particular symbol k small k we are using for the maximum degree of a graph G which we

have considered in our discussion.

We may also assume that the maximum degree of a graph should be 3 or more in our

discussion. Why because? If it is less than that then it becomes a complete graph or the

odd cycle and where this particular equation will be applicable that is chi of G is less

than or equal to 1 plus delta G if you want to see that if the values are 1 so this will be

the complete graph k 2, here the degrees are equal to 1.

So, what is the chromatic number of k 2 so, here the big delta G is equal to 1, so this

becomes 1 plus 1 that becomes 2. So, if you color this vertex with a label 1 you cannot

color the other vertex with same label for a proper coloring it has to be another colour



which is required hence 2 colors are required minimum to colour this particular graph. If

it is odd cycle, where k is equal to 2, then k is equal to 2 that becomes odd cycle here the

degree of this graph is equal to 2.

So, hence we also call it as k is equal to 2 here in this case. So, what is the chi value of k

3 this is a complete graph. So, this particular vertex can be coloured with the label 1 or

index one of that colour the second vertex which is adjacent to the previous one cannot

be coloured with one.

So, another colour is required third vertex which is adjacent will other previously given

colour 1 and 2 cannot be coloured with either one or 2 hence another colour three is

required.  So, chi of G is big delta plus 1 that is 2 plus 1 that is 3 so this particular

theorem or this particular bound for complete graph and odd cycles we have seen that it

is applicable if the big delta is basically.

Now, we will consider that when big delta data of G which we call it as k should be

greater than or equal to 3 cases only in this particular proof. Now here our aim is to order

the vertices so that each has at most k minus one lower index neighbours and then apply

the greedy coloring algorithm which will yield the bound for our discussion.

So, let us see how we are going to order the vertices so that this particular condition that

at most k minus 1 lower index it has basically already k minus 1 lower index neighbours

then only we can give a 3 D coloring or k with k number of colours.



(Refer Slide Time: 08:57)

So, let us see the steps in the Brooks theorem consider that here the graph G which is

given is not a regular is not k regular graph. So, what we will doing? We will choose a

vortex of degree less than k so let us take an example of a graph which is not a k regular

so that means, not all vertices are having a degree k in a particular graph.

Let us choose this graph and let us have this is the graph that is called a kite so it is not a

regular k graph. Now here it says that choose a vertex of degree less than k here the k is

3. So, the vertex with a degree less than k is let us say it is vn which is degree less than k.

Now since this particular graph is connected. So, we grow a spanning tree of G from.

Let us draw a spanning tree assign the indices in the decreasing order as we reach the

vertices so it is vn. So, let us say that vn minus 1 and this is let us say vn minus 2 and this

is  vn minus 3 let  us  call  it  as 1,  this  is  2,  this  is  3,  and this  is  n  so let  us  label  it

accordingly. So, let us call it at as this is v 1, v 2, v 3, v 4, v 5 and so on up to vn. So, we

say that this particular vn is here.

So, we have obtained the vertex ordering according to the construction of the spanning

tree and then basically from vn to all other nodes connecting to that particular tree are

given a lower indexes. So, this particular ordering we have obtained so in this particular

graph example we order vn minus 3, vn minus 2, vn minus 1, and vn. 

So, this particular way if we order it will follow the following property so higher indexed



neighbour along this particular path to vn in this particular tree here each vertex has a

post k minus 1 lower index neighbours. So, let us take vn vn has only one neighbour so it

is on the so it is 1 neighbour on the left side so that becomes k minus 2, vn minus 1 is

concern it is having 1, 2; 1 and 2 so, it is nothing, but k minus 1 lower index neighbours

are basically placed on the left side.

So, if we apply a greedy coloring in this particular ordering we can use at most k colours

because k minus 1 colours are already used by the neighbours that is k minus 1 lower

index neighbours and so basically k-th color will be use for that purpose so at most k

colors will be used here in this particular way so if the graph G is not regular. So, it will

give you the k colours. So, hence chi of G is equal to k colours that is nothing, but big

delta of g.
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In the remaining case let G is k regular suppose first that G has a cut vertex x and let G

prime be the sub graph of consisting of the components of G without x together with the

edges to x the degree of x in G prime is less than k. So, the method about provides the

proper k coloring of G prime by permitting the names of the colours in the sub graph

resulting in this way from the components of G without x we can make the coloring

agree on x 2 complete a proper k coloring.
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So, now we will see the cases in this particular way. Now if let us say that G is k regular

in this particular case we have 2 different cases for the one is that that G has a cut vertex

and G is 2 connected. So, let us take the first case when G is k regular and also has the

cut vertex. Now to see this scenario let me give you an example graph which will fit in

this scenario.

So, here this is the example of a of a 3 regular graph. Now in this particular hence it is

suffices to show that every 2 connected k regular graph with k is equal to three has such

a triple v 1, v 2 and choose a vertex x if kappa of G minus x is greater than or equal to 2,

let v 1, v x and v 2 be the vertices with distance 2 from x such a vertex v 2 exists because

G is regular and is not a complete graph let vn be common vertex common neighbour of

v 1 and v 2

Let us take a example graph and understand this particular case. Now here this particular

graph is 2 connected and k regular and we will consider 3 triples; v 1, v 2, and vn. Now

chose a particular vertex x so here let us say that this is equal to x now if you remove x

so without x this the remaining part of the graph is having connectivity kappa G without

x of 2.

So, let v 1, vx that we have already assumed and let v 2 be a vertex with a distance 2

from x so this particular distance you see that this is one half and this is another half so

this distance is 2. So, distance of x and v 2 here is equal to 2 and we assume a vertex vn



between x and v 2. Now such a vertex exists because this particular graph is regular and

is not a complete graph.

Hence vn is basically be a common neighbour of v 1 and v 2 hence we have shown that

in this particular scenario when the graph is k regular and 2 connected there exist 3 such

triple. Hence this particular case will also be satisfied with k coloring of the graph so k

means with the big delta G of a graph

Now, let us see that if there exist if kappa of G without x is equal to 1. So, let us say that

G without x is equal to 1. Let us take another example graph. Now this particular graph if

we consider without without x so this will be the connectivity of kappa value of this

particular  graph  G  without  x  is  equal  to  1.  So,  x  is  removed  then  basically  the

connectivity is 1 and let us consider vn is equal to x this is another case.

Now, since this particular graph G has no cut vertex so x has the neighbour in every leaf

block of G minus x. So, meaning to say that this particular x has basically is a neighbour

in every leaf block so there are 3 leaf blocks of G minus x. So, neighbours of neighbour

v 1 and v 2 of x into such blocks are nonadjacent. So, v 1 so this particular block they are

nonadjacent; that means, there exist another such block also G minus x v 1 and v 2 that

means, if we remove; that means, if we remove v 1, if we remove v 2 and if we remove x

the remaining part of this particular graph which is shown here this is this part of the

graph is G without x, v 1 and v 2 is connected.

Since the blocks have no cut vertices by the definition which we can see the previous

videos of blocks. Since the blocks have no cut vertex that is why removing one vertex

from this particular block will not disconnect the blocks hence for k that is the maximum

degree is greater than or equal to 3 that is why this particular x has another besides v 1

and v 2 has another neighbour and therefore, G minus v 1 and v 2 is connected so that

means,  if  x  is  included  only  v  1  and  v  2  are  removed  then  x  will  also  be  have  a

connection with a node let us say y because the degree of degree of x in this particular

graph is equal to 3.

So, this is one neighbour with v 1, another with v 2 so x is also connected. So, hence this

show that G minus v 1 and v 2 is connected. So, we have shown that in this particular

scenario also the 3 triples v 1, v 2, and vn they exist and thus this proves the Brooks

theorem.
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The bound given by the Brooks theorem can be improved when G has no large cliques

the Brooks theorem implies that the complete graph and the odd cycles are the only k

minus 1 regular k critical graphs. Gallai strengthened this by proving that in the sub-

graphs of k critical graph induced by the vertices of degree k minus 1 every block is a

clique or an odd cycle

So, Brooks theorem is states that chi of G is less than or equal to the maximum degree of

a graph whenever omega G that is the clique number of a graph is bounded above by big

delta of G and it is basically at least of 3 degree. So, there are various other readers given

a conjectured about the chromatic number which is bounded by the average of the trivial

upper bound and the lower bound.
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Now, you will see what is the color critical graphs the graph G with no isolated vertex is

color critical if and only if chi of G minus C that means, if we remove an edge from a

graph the chromatic number of that particular graph will reduce then that graph is called

color critical graph; that means, it is critical in the sense it is colour critical in the sense

that is every edge it is removed it will also reduce the number of colours. 

Hence  such  graphs  are  called  color  critical  graphs.  Hence  when  we  prove  that  a

connected graph is colour critical we need only compared with the sub-graphs obtained

by deleting a single edge.
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And we will  see the proposition let  G be a critical  graph now for a vertex v in the

vertices in the set of vertices of a graph G there is a proper k colouring of a graph in

which the colour on v appears nowhere else and other k minus one colour appears in the

neighbours of that particular vertex.

So, if that particular vertex is removed what will happen the number of so the chromatic

number will also be reduced why because that colour will not be present. So, number of

colours will be reduced by 1. Similarly, if an edge is present so every proper k minus 1

coloring of the graph without that edge with the same colour to the 2 endpoints of v.

Hence the graph of G is k critical; meaning to say that if this is the graph G minus e, if

you do the k coloring of G minus e graph these 2 vertices are receiving the same colour.

Hence, chi of G minus C will be chi of G minus 1 because we are in chi in G these two

vertices which are having an edge they may not be having the same color, they may

receive the different colours hence this is the proof.

So, let us see the proof again given proper k minus one colorings of the graph without a

particular vertex v. Now adding the colour k on v alone completes a proper k coloring of

the graph. The other colours must all appear in neighbours since otherwise assigning a

missing colour to be would complete a proper k minus 1 colouring. If some proper k

minus 1 coloring of the graph without that edge e gave distinct colours to the endpoints

of v, then adding e would yield a proper k minus 1 coloring of that particular graph g.
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The graph C 5 join K s is an example of a colour critical graph. It is easy to prove using

this particular remark and the proposition by considering the cases of and deleted edge e

may belong to G or H or have an endpoint at each.
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In this lecture we have discussed the Brooks theorem and we have also seen a critical

graph. Upcoming lecture, we will discuss the properties of a enumeration in reference to

the colorings and also some the few other topics.

Thank you.


