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Preface  recap  of  previous  lecture,  we  have  discussed  the  Network  Flows  maximal;

Maximum Network Flow, f-augmenting path, Ford-Fulkerson labelling algorithm Max-

Flow  Min-cut  Theorem.  Content  of  this  lecture:  this  lecture  we  will  discuss  graph

coloring that is; the vertex coloring and it is upper bound.
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Vertex coloring problem rises in many applications.

For example wherein the two committees if they have a common member, then they can

basically  join  with  an  edge.  So,  the  graph  which  may  form out  of  these  particular

conflicts which will model the conflicts can be applied graph coloring. So, that we can

schedule with a minimum number of slots a different committees meeting.

So, this particular model if it is modelled form of a graph and applied the graph coloring

algorithm. Graph coloring problem then it will be basically nothing, but it is a modelling

and solving the problem of the conflicts another such problems is about finding out the

timeslot for the examination.

Now, here in these particular scenario two courses having the common students cannot

be scheduled in the same time slot. So, the two courses having a common students can

basically be represented again with the help of the graph. So, the graph is nothing, but

the modelling of the conflicts between courses such that the adjacent vertices like this

can be scheduled in different slots hence this way of representing the problem of you

know t examination is nothing, but modelling the conflicts and then the graph coloring or

the chromatic number of the graph is the minimum number of slots required to conduct

the entire examination.

So, again this is another such problems so; that means, whenever there is a problem of a

conflict  it  can  be  modelled  in  form  of  a  graph  and  the  chromatic  number  of  that

particular  graph;  will  become the minimum number of  slots  or  minimum number of



timeslot required to solve that particular problem.

So, hence how this particular; coloring is to be done in these graphs which are modelling

different problems for example, committee scheduling with a minimum number of slots

similarly examination to be conducted with a minimum number of slots. So, that kind of

particular problem can easily be modelled in a form of a graph and that will basically

captures the conflict relation and then basically the chromatic number; that means, what

is basically? How the coloring is to be done in that particular graph. 

And  that  number  of  colours  minimum  number  of  colours  required,  that  is;  called

chromatic number of the graph will  tell,  what is basically  the best possible way that

particular problem can be solved.
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Another such problem of coloring arises in a map coloring. So, coloring the regions of a

map  with  different  colours  on  the  regions  with  common  boundaries  another  such

example called map coloring problem. So, on the left here we can see that it has five

regions: 1, 2, 3, 4, 5, but the constant the different the adjacent region should not receive

the same colour at the same region should receive the different colours. 

So, the adjacent regions are receiving different colours that we have already shown you.

So, that no two regions which are basically having the common boundary are receiving

the same colour they are receiving different colours.



So, how many colours are required one two then this is already done three and four

different colours are required to basically map this five region map. This particular map

can also be represented in a form of a graph, where these regions are represented as a

notes regions of a map and edges are the adjacent relation between the regions. 

So, having model this particular a graph, now we apply how many minimum number of

colours required in this particular vertex coloring of this graph that will be the solution

for map coloring region. So, this particular labelling of these vertices or we also say it is

a coloring of the vertices will be the context for coloring problems.
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Vertex coloring k-coloring of a graph G is a labelling function f; which maps vertices of

G to S where S is basically set of k different values these are called labels are these labels

are the colours the vertices of one colour will form the colour class. So, a k coloring is a

proper if adjacent vertices have different labels a graph is k-colourable if it has a proper k

coloring the chromatic number of chi of G is the least k such that G is three colourable.

So, take this particular example. So, let us take a graph of having four vertices now we

do the labelling. So, let us call it as labels. So, let us say how many labels are required

for  this  particular  graph G; this  label  is  proper  if  the adjacent  vertices  are  receiving

different colours. For example, if we colour and say that this particular colour is having

label 1, then these two adjacent vertices cannot receive the same colour.



So, let us give it another colour and let us call it as two, this vertex is concerned this

vertex can also be coloured with the same colour to and yet it is a proper coloring. Now

as far as this vertex is concerned this vertex cannot be coloured with colour number 2.

So, it can be coloured with colour number 1. So, with only two labels we can basically

colour these particular a graph so; that means, labelling is nothing, but the set of vertices

let us say a, b, c, d they are being mapped to a set S and that S is 1 oblique two and we

have shown this particular mapping here in this particular graph.

So, we have found out a proper here two proper two labelling this particular labelling,

whether it represents these numbers are if this numbers are immaterial are not having any

significance then we can call them as a colour. So, this is called proper you see every two

adjacent vertices are receiving different colours. Hence, this particular coloring is called

proper  two  coloring  is  required,  because  with  one  colour  you  cannot  colour  this

particular graph. So, minimum two colors are required.

So, we have obtained a proper two coloring of this particular graph and let us revisit the

definition again. So, a k coloring of a graph G is the labelling which is nothing, but a

function of vertices of G, which will map to some set of labels let us call k different

labels. So, these labels are called colours why? Because, they are values are immaterial

from with set they belong that also is not having any significant. So, let us call it as

colours  the  vertices  of  one  colour  for  example,  the  vertices  having  colour  one  are

represented as a and d. Similarly, the vertices of colour two are represented b comma c

and they are called colour classes. 

So, the vertices of one colour is called the colour class. So, in this example we have

shown you two colour classes 1 and 2. Now a k coloring is a proper adjacent vertices

have different labels here you can see vertex a and b, they are adjacent, but they have

colours or labels 1 and 2, they are not having same hence any two vertices any pair of

vertices which are adjacent you pick they may receiving different colours or a different

labels hence this coloring is proper.

So, graph is k-colourable you would has a proper k coloring. So, we have shown a proper

two coloring of a graph, hence this particular graph is 2 colourable. Now the chromatic

number chi of G is the least cases that G is k colourable. So, here we have taken the

value two, hence chi of G is 2. So, the chromatic number of this particular graph which



we have shown you which we have taken in this particular example is 2, because this is

the least value you can also colour with three number of colours you can also colour with

four different numbers of colours, but this is the least of these all hence this particular

least value k such that this graph is k-colourable this value becomes two here in this

particular example.

So, a graph is k-colourable if it has proper l coloring the chromatic number chi of G is

the least k such that G is k colourable.
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In the proper coloring each colour class is an independent set. So, a graph is k-colourable

if and only if vertices of a graph G is the union of k independent sets take this particular

graph same graph which we have taken up. So, it required two different say it is a two

colourable graph. So, chromatic number of this particular graph we have shown is two

so; that means, this is colour one these and this end will receive the second colour this is

again receives colour.

So, we can partition or we can collect the colour class. So, all the vertices of having same

set of colours is an independent set; why? Because they do not have any edge if they

have an edge or they are adjacent that then they cannot receive the same colour hence.

So, each colour class represents an independent set. So, here this particular graph has two

independent sets; why? Because it is chromatic number is 2.



So, a k-colourable and k partite sets have the same meaning the usage of these two terms

is slightly different often k partite is a structural hypothesis by k-colourable is the result

of an optimisation problem that we will see.
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Further let us take the example of a two colourable graphs. So, a graph is two colourable

if it is bipartite let us see this particular bipartite graph. So, this is C 4. So, this is 2-

colourable means you we should be able to colour this particular graph in two different

colours for example, this is the adjacent. So, it cannot be read. So, we have turned it to

other colour this is also adjacent to read it is turned to the other colour this can be read.

So, this two colours are required. So, this graph is 2-colourable are the chromatic number

of C 4 is equal to 2, hence this is the bipartite graph.

So, two colourable graphs are bipartite graph now this is a C 5 graph. Let us start the

coloring and see how many minimum numbers of colours can be coloured with two

different colours. Let us colour it with this colour these two adjacent notes cannot receive

this particular colour one which we have a sign this particular note is not adjacent. So, it

can also be coloured with; hence this cannot be coloured let us take another colour to

colour the remaining vertices.

Since this is colour one. So, we have chosen another colour. So, this is the colour number

two this also can receive the same colour; why? Because they are not adjacent either to

the  second colour  not  to  the  first  colour  as  far  as  this  is  concerned either  it  can  be



coloured with the colour number one or it can be coloured with colour number two. So,

you we have to select from the palate another colour.

So, c three required how many colour three different colours. So, this particular graph is

3 colourable;  why? Because we cannot colour this  graph in with two colours,  hence

minimum number of colours required to colour this particular block is three hence it is

called three colourable. Similarly, let us draw a Peterson graph and then you will see this

is also the isomorphic to the Peterson graph so, another way to represent it.

But, let us see this particular and start the coloring, how many colours we need to colour

this Peterson graph? Let us take this particular vertex and colour with colour number 1,

this is adjacent it cannot be receiving the same colours. Let us colour these two vertices

again  with  the  same colour,  then  let  us  choose  other  colour. So,  that  the  remaining

vertices  now this  is  adjacent  to  this  red.  So,  it  should  receive  different  colours.  So,

different colour can be used to colour this particular graph.

Similarly, we can colour these two vertices also, why? Because they are not adjacent they

may basically get the same colour as far as these notes are concerned they cannot be

coloured with the second colour. Similarly these colours these two notes they may be

coloured by, because they are not adjacent to these colours. Now we require another third

colour to colour the remaining part of the vertices this can be coloured with the third

colour. 

So, three colours so, this graph is 3-colourable are the chromatic number of Peterson

graph is equal to 3 that we have seen. So, these graphs are called three colourable while

bipartite graphs are called 2-colourable graphs.
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So, with this let us see the definition of a chromatic number of a graph a graph G is k

chromatic  if  the chi  value of G is  equal  to k,  that  we have already seen a proper k

coloring of a k chromatic graph is an optimal coloring. Again I am explaining it. So, if a

graph is k chromatic graph; that means, the chromatic number of a particular graph let us

say k if it  is given if you obtain proper k coloring of a of a graph with a chromatic

number k, then it is called an optimal coloring. 

So, optimal coloring is nothing, but finding out a proper k coloring of of a chromatic

graph is an optimal k coloring instead of k optimal you can say that for a graph having

the chi value is equal to k this particular coloring is the optimal coloring.
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Let us see the k-critical graphs for a small value of k. Now if we take a subset of a graph

G let us call it as h and the chromatic value of every subset of a graph G that is h is

always less and then for every proper sub graph h of G then G is called colour critical or

a k-critical  graph. So, again I  am repeating;  let  us  take  a  graph G whose chromatic

number of a graph is k and every subset h of that particular graph is having the chromatic

value less than k or less than that chromatic value of this particular graph G, then G is

colour critical or it is called k-critical. Let us understand this particular concept.

So,  let  us  take  a  graph K 2  k  two is  two vertices  how many  colours  are  required;

obviously, this can be coloured with 1 this is 2. So, the chromatic number of K 2 is 2, if

you take a subset subset will be K 1. So, the chromatic number of K 1 is 1 and that is less

than K 2. So, the proper coloring needs at least two colours of a graph even only the

graph has an edge, thus K 2 is the only two critical graph here. Similarly K 1 is only one

critical  graph;  since  2-colourable  is  the  same as  the  bipartite  set  or  it  is  a  same as

bipartite.  So, it  will  characterize the bipartite means it will employ that three critical

graphs or having the odd cycles we can test two colourability of a graph by computing

the distances from the vertex X. 

So, capital X and capital Y there are two big sets which we have obtained, where all the

set of vertices u which are basically having the distance from X is the even parity is

basically forming an X set. Similarly the Y set is all such pair of all such vertices let us

call it as again V whose distance from X is always odd in parity. So, we will obtain two

different sets or we obtain a bipartition of a particular graph, hence this particular graph

is a bipartite graph and each X is nothing, but they are the independence sets.

Now,  there  is  no  good  characterisation  of  four  critical  graphs  or  a  test  for  three

colourability is known to us let us take another definition the clique number.
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So, the clique number of a graph is little omega G, of a graph is the maximum size of

pairwise adjacent vertices in a graph. Earlier we have already given the alpha G is the

independence  number  of  a  graph  G;  that  is  the  number  of  independence  sets  or  a

maximum number of independent sets available in the particular graph.
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So, with this particular introduction of those concepts; let us take a proposition for every

graph G chi of G or a chromatic number of graphs G is at least omega G so; that means,

if a graph has a clique if a graph has a clique of size omega G. Now, clique whenever

clique is there you can obtain or you know that the chromatic number of a clique is n or

basically, the size of the clique you cannot obtain a proper coloring with less than that



number of vertices of that particular click.

Hence,  the coloring  which you are obtaining  should contain  at  least  the size of  that

particular clique. Hence this particular bound is proved the second bound says that each

color class; that means, after obtaining the coloring we collect the independent sets in the

form of the colour class and alpha G, when indicate the number of independent sets. 

So, at least that many number of colours are required because each independent set will

be given a separate colour. So, alpha G different colours are required hence total number

of  vertices  are  n G, if  we divide then at  least  that  many number of colours  will  be

required hence the second bound is also proved.
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Now  let  us  see  that  this  particular  bound  how  good  this  bound  is  in  the  terms  of

tightness. So, chi of G may exceed omega G in this particular construction of a graph.

Let us take for the value of r is greater than 2 greater than or equal to 2. So, if you take r

is equal to 2, then it will form a cycle odd cycle C 2 r plus 1 becomes an odd cycle C 5

and Ks is any complete graph which is represented here.

Now, union operation we have defined earlier of two graphs is nothing, but although

vertices of these two graphs are adjacent to each other. So, if that is the condition then

every vertex will be adjacent to all the vertices of Ks similarly this vertex also will be

adjacent to all the other vertices of Ks this also will be adjacent.



So, let us see how many colours are required definitely this particular graph G is going to

exceed this particular value, why? Because, every vertex of C 2 r plus 1 is adjacent to Ks

so, more than omega of G that is; this is the complete graph that many number of colours

are required, let us see how many different colours are required?

Now, here you can see that this is an odd cycle it require how many colours three colours

and this requires S colours so; obviously, the chromatic number of this particular graph

will be S plus three is at least this particular value will be there, hence we conclude that

in this particular scenario is strictly greater than the size of the clique. So, told you that

we are looking up this particular bound how good this particular bound is? So, for some

of the graphs here the bound is  quite  loose,  why? Because it  is  strictly  greater  than

omega G.

Now, let us see we will see further that a particular graph where.
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This particular bound is tight or equal hence the coloring will be looked upon, now let us

take the definition of a Cartesian product of two graphs G and H, which is represented by

this particular symbol Cartesian product of two graph is a graph with a vertex at V G

cross or a Cartesian product vertex set of H it is specified by putting uv adjacent to u

prime, v prime, if and only if u is equal to u prime and v prime vv prime will have an

edge in H.



Similarly, v is equal to v prime and uu prime has an edge in H.
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So, these are the example of such construction; but let us see another example. So, this is

C 3 recycle and let us takes a C 2 cycle and let us draws a cross product of C 3 Cartesian

product C 3 and C 2. So, this particular vertex if you take a Cartesian product, what will

happen? Let us see that these two vertices will join and they will basically form this one

and then again another pair of vertices and this is also joined.

So, as for as these definitions are concerned, u and u prime this is let us say u and this is

u prime. So, u and u prime is equal and v and v prime let us say that this is v prime and

this is let us say v. So, v and v prime has an edge. So, that will represent something here

no something like u and u v and v prime.

So, let us see in this particular example x, y, z this is you know that C 3 cycle 1, 2, 3, 4

this is C 4. So, let us take this particular example,  and we will see in this particular

example the Cartesian product of these particular graphs. So, you see that this particular

cycle is repeated at every pair of vertices and these particular cycles also repeated on the

other side and that becomes a Cartesian product.
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So, having defined this particular Cartesian product, then let us see the proposition given

by using that the chromatic number of the Cartesian product of two graph is nothing, but

the maximum of the chromatic number of the graph G and the chromatic number of

graph H.

 (Refer Slide Time: 33:50)

 Now, let us find out the upper bounds in terms of the colourability. So, most upper

bounds on the chromatic number come from the algorithm that produced the colourings.

For  example,  assigning  distinct  colours  to  the  vertices  will  yield  that  the  chromatic

number of G is at most n G, in the sense that if you are given a graph let us say that this

particular graph here is K 3, then you require how many different colours that is nothing,



but the number of the vertices that becomes equal, but if the graph is not complete, then

what will happen then this is not equal to n G, but it is less than n G.

For example if there is no edge. So, you can colour using two colours only that is not

with the three colours so; that means, then chi of G is basically not equal to n G, but it is

less than n G. So, this particular makes a possibility to find out the bound. So, this bound

is the best possible, when the graph is the complete graph that is equal to n, but we can

improve this particular best possible bound with another bound that is always at least as

good, why? Because if we say that the upper bound of a chromatic number is n G; that

means,  we  have  not  seen  inside  the  structure  of  that  particular  graph  and  we  have

assumed the structure of complete graph and we have established a bound.

So, if the graph is not a complete graph then a better bound is to be ascertained. So, we

can do better by coloring the vertices in some order and always using the least available

colour.
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Greedy coloring algorithm the greedy coloring relative to the vertex ordering that is V 1,

V 2 and so, on up to V n a particular ordering of the vertices of a graph G is obtained by

coloring, the vertices in this particular given order assigning to a vertex V i the smallest-

index colour not already used on it is lower-index neighbours.

So, we are going to give you the first algorithm for coloring and this is called greedy



coloring algorithm. Then we will check the bound which we obtain using this particular

greedy coloring, how good the bound is? We will know that once we compare it with the

chromatic number of a graph G, then we will see how we can improve this particular

algorithm and more insight in the graph coloring.

So, again I am explaining this particular algorithm a greedy coloring algorithm is related

to the vertex ordering. Again I am taking let us take the simple graph V 1, V 2, V 3. So, a

particular ordering let us say we say that V 2, then V 3 and V 1 and we want to colour in

this order. First we have to order the vertices and then we will be coloring them in the

same order.

So,  let  us  we  have  obtained  a  particular  order  now  according  to  greedy  coloring

algorithm we will assign to V i we will assign to V i by smallest indexed colour. So, we

will obtain the colours as the indexes for example, colour number 1, 2, 3, 4 and so, on.

So, one may represent red blue green and so, on. So, colours are also indexed and vertex

is also in particular order.

Now, let us see that greedy coloring algorithm says that a greedy coloring relative to the

vertex ordering is  obtained by coloring the vertices  in  that  same order assigning the

vertex V i by smallest indexed colour not already used on it is lower index neighbours.

So, smallest index colours; that means, we will pick the colours from a particular index

that is a lower index colours which are not applied earlier  to it is neighbour will  be

applied to that particular vertex let us take this particular example.

So, let us we have the coloring colours 1, 2 and 3, they are indexed. Now vertices related

to the given order let us say these orders are V 2, V 3 and V 1. So, first we have to colour

V 2 we will colour V 2 by picking the these indexed colour which is not used in it is

lower indexed neighbours one is never used. So, let us colour with this particular vertex

with the colour number 1.

Now, comes to V 3; V 3 is a neighbour of V 2 who has already used lowest indexed or

smallest index colour 1. So, the next is smallest index colour which is not used by the

neighbour is colour number 2. So, V three will be coloured with colour number 2 as far

as V 1 is concerned V 1 is neighbour to V 2 and V 3 both both are it is neighbours. So,

the V 2 and V 3 have already used colour number 1 and 2; that means, the smallest index

colour which is not used by the neighbour is colour number 3. So, this can be coloured



with 3.
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So, this particular coloring is called a greedy coloring. So, this particular graph is also

explaining the greedy coloring algorithm here. We are given 5 node graph, let us call it as

G and we are given the vertices in this particular relative order 1, 2, 3, 4 and 5. So, the

vertices are given in this order and we have two colours relative to this particular order in

this algorithm.

Similarly, we are also given the indexes of the colours 1, 2, 3, 4 and so, on starting the

algorithm, what it does vertex one will be coloured first with the smallest indexed colour

not used by the neighbour of one earlier. So, the colour number one will be assigned

second vertex is vertex number 2, vertex number 2 is the neighbour of vertex number 1.

So, the smallest index colour which is not used by the neighbour of 2 is 3 is basically, the

second index colour. So, which is assigned to that particular vertex?

Similarly, the vortex number 3 in that order. Now vertex number 3 is neighbour to the

earlier  used colours by their neighbours that is 1; and 2 are it is neighbours 1 and 2

colours already used. So, smallest colour index which is not used by the neighbour of 3

is 3 itself. So, 3 will be coloured to this particular vertex.

Now, coming vertex number 4. Now vertex number 4 the neighbours of 4 who have used

the colours earlier are 3 and 2. So, three cannot be used and two cannot be used. So, the



smallest index colour which is available is 1. So, one will be assigned to this particular

vertex finally, we have to come to 5. So, vertex number 5 it is neighbour are 3 and 4, let

us see what colours 3 and 4 are assigned. So, 3 and 4 are assigned this colour and this

colour. So, the smallest index colour which is not used by the neighbours of 5 is 2. So, 2

will be assigned here. So, this becomes a greedy coloring algorithm.
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Now, let us see the proposition which will estimate the basically performance in terms of

the bound of this greedy coloring algorithm. This greedy coloring algorithm will give the

bound which says that the chromatic number of a particular graph is less than or equal to

the maximum degree of a graph plus 1. Let us see the proof says that for a relative vertex

ordering each vertex has at most maximum degree earlier neighbours. So, the greedy

coloring cannot be forced to use more than maximum degree plus 1 number of colours,

hence this proves constructively that the chromatic number of a graph is bounded by or is

at most maximum degree of a graph plus 1.

Now, this maximum degree plus one bound is the worst upper bound that that greedy

coloring algorithm could produce although this becomes optimal for a complete graph

and odd cycles. Now choosing this particular greedy coloring algorithm depends upon

choosing the vertex ordering.

So, if the vertex ordering is chosen very carefully it will improve this particular bound.

Further, now one heuristic which will be applied here is that if we order the vertices



according to the degree sequence. So, that the highest degree vertices are placed ahead or

in the beginning in the sequence and the next higher degree will be placed and so, on

because if the highest degree vertex is placed there will be no other neighbour, before it

hence you can easily start the colour and; obviously, the number of colours required will

be quite less or it will improve this particular bound of the greedy coloring algorithm.
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Let  us  see  this  particular  heuristic  which  is  given  by  Welsh  Powell  and  hence  the

proposition which will give you a further modification in the bound. So, if a graph G has

a degree sequence d 1 is greater than or equal to d 2 is greater than and so, on up to d n;

that means, nonincreasing order of the degree sequence of a graph if it  is given; that

means, vertices are ordered in this particular degree sequence.

Then, when we apply the greedy coloring on this particular relative vertex, ordering of

this degree sequence. So, that vertex V 1 is having the highest degree is placed first, then

second and so, on. Then this particular kind of coloring or using this heuristic which is

called Welsh Powell heuristic; let us estimate that it gives 1 plus max of i minimum of d i

and i minus 1, and this particular bound is better than maximum degree plus 1 some of

the situations.

Now, let us prove this. So, we apply greedy coloring to the vertices in the non increasing

order of the degrees. Now, when we color ith vertex i it has at most either the d i or if the

i has degree is placed, before it is i minus 1 is lesser than the d i, then the minimum of



either the degree or the i minus 1. So, i minus 1 says that the highest degree is let us say

that V 1 node is V 1. So, V 1 is placed. So, before V 1 there is no other neighbour hence

d i will be not used. So, i minus 1; that means, I means the index i is 1. So, the 0 index

colours will be use. So, minimum of that see these two smallest index and the degree

values are taken together in Welsh Powell heuristics.

So, again I am repeating that vertex i has at most minimum of d i and i minus 1 earlier

neighbour. So, at most these many number of colours appear on other neighbours, hence

the colour we assigned to v i is at most one plus minimum of d i and i minus 1 this holds

for each vertex. So, if we maximise over i to obtain the upper bound on the maximum

number of colours used will be this particular bound that we have already proved now.
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Let us see the remarks on these two discussions, that is; first we have obtained a greedy

coloring whose bound was big delta G plus 1 and then we have seen the Welsh Powell,

where it is 1 plus max of i min of d i and i minus 1. 

So, the bound is always at most 1 plus maximum degree of a graph. So, this is always at

least as good as the proposition which we have seen so; that means, this particular bound

is at least as good as the earlier bound which we have seen it gives optimal upper bound

for a particular example,  that we have seen the union of odd cycle and the complete

graph while 1 plus maximum degree does not give it.



So, in proposition 5.1.14 that is Welsh Powell we use the greedy coloring with welsh

chosen ordering.  In fact,  every graph has some vertex ordering for which the greedy

coloring uses only the optimal number of colours, but it is very hard to find out such an

ordering. Hence the graph coloring problem to find out an optimal coloring through an

algorithm is a bit hard it is not a easy algorithm.

So, our next example introduces the class of graph where such an ordering is easy to find

which ordering means that ordering which gives an optimal coloring, through the greedy

coloring. So, the ordering produces the coloring that achieves the equality in the bound

that is chi of G is equal to little omega of G so, that we will see.
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So, this kind of graph or this kind of ordering which we are talking about here we can

obtain using a particular kind of graph which are called a interval graph and this interval

graphs are basically if you see the problem of a register allocation in the compiler or in

the  pitch  compiler  does.  Normally,  it  uses  the  register  allocation  through  the

understanding; how it is going to be used in the programs? And that is represented in the

form of a interval graphs and that interval graph will give the vertex ordering in that

ordering is basically the optimal gives an optimal coloring through the greedy coloring.

Let us see all that things in this example. So, a computer program restores the values of it

is variables in the memory for arithmetic computations. The values must be entered in

easily axis locations which are called registers; Registers are expensive. So, we want to



use them efficiently  two variables  are  now are used simultaneously then we allocate

them to the same register.

For each variable we compute the first and last time, when it is used a variable is active

during the interval between these.
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Times this is represented in the form of a graph which is called interval graph. So, we

define a graph each vertices are the variables two vertices are adjacent, if they are active

at the common time the number of registers needed is the chromatic  number of this

graph.

The time when the variable  is  active  is  an interval.  So,  we obtain a  special  type of

representation for.
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The graph which is called a interval graph.

 (Refer Slide Time: 53:44)

So, let us take the example that given this particular graph here is called interval graph

and the intervals are given in this particular manner.

So, the vertex ordering corresponding to this particular interval graph becomes a, then b,

then c, then d, then e, then f, then G, then h. So, this particular vertex ordering we have

obtained from the intervals  when a particular  variable  is  at  start  time.  So,  for every

variable the start time according to the start time we order the vertices and we got this

particular vertex ordering having got this vertex ordering.



Now, we will see the particular ordering of or indexing of the colours this is the indexing

of the colours colour indexing. Now we apply the greedy colouring algorithm. So, here

vertex a is not yet coloured. So, the first smallest index colour which is not earlier used

by it is neighbours a is 1. So, one will be coloured here.

Now, as far as b is concerned a and b they are neighbour. So, b cannot be coloured with

colour number 1. So, colour number 2 will be given to b. So, b is also coloured c is

concerned c is the neighbour of b. So, c cannot be given this particular colour, but c can

be given the smallest index colour that is 1 as far as d is concerned d is the neighbour of

c and b. So, c is basically having the colour number 1 b is having 2. So, the third colour

is given to d.

Similarly, e is concerned e is a neighbour of c and d. So, c is having colour 1 it cannot be

used colour 1. So, colour 2 is the smallest 1. So, colour 2 will be assigned to e as far as f

is concerned f will be given red and all the colours will be assigned as we have shown in

this particular figure.

Now, this particular coloring which we have obtained in this particular vertex ordering in

the interval graph is optimal and that uses only four colours.

 (Refer Slide Time: 57:04)

Now, we will see the proposition which says that G is an interval graph, then chromatic

number of a graph is equal to omega G; that means, we can colour with only the clique



value of that particular offence this becomes optimal, why? Because we have seen that it

is  at  least  omega  G.  Now, it  will  becomes  equal  to  omega  G,  hence  this  particular

coloring is optimal for interval graphs.

Let us see the proof or other vertices according to the left end points of the intervals in

the interval representation that we have already seen earlier in the example. Apply the

greedy coloring and suppose that x receives k, maximum colours assigned. Since x does

not receive a smaller colour, left end point a of it is interval belongs to the interval that

already have the colours one through k minus 1.

These  interval  all  share  the  point  a,  and  we  have  k-clique  consisting  of  x  and  the

neighbours of x with colours 1 through k minus 1. Hence omega G is at least k and that

is; basically at least or that is less than chromatic number of that particular graph since

chromatic number is always greater than omega G greater than or equal to omega G

always. So, if you take both these equations then this particular coloring is optimal.
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Hence it is proved. Now, remark the greedy coloring algorithm runs to rapidly. It is “on-

line” in the sense that it produces a proper coloring even if it sees only one new vertex at

each step and must colour it  with no option to change earlier  colours. For a random

vertex ordering in a random graph, greedy coloring almost always uses only about twice

as  many colours  as  the  minimum,  although  with  the  bad ordering  it  may use  many

colours on a tree.
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Conclusion in this lecture, we have discussed k-coloring of a graph, optimal coloring,

clique number, cartesian product, the upper bounds, that is. with reference to the greedy

coloring. We have also seen an interval graph based coloring and example which is based

on it that is about register allocation in upcoming lectures we will discuss the brooks

theorem.

Thank you. 


