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Network Flows. Recap of previous lecture we have discussed k connected graphs, k edge

connected  graphs,  Mengers  theorem,  and line  graph,  content  of  this  lecture,  we will

discuss  network  flows  that  is  maximum  network  flow,  f  augmenting  path,  Ford-

Fulkerson labeling algorithm, Max-flow min cut theorem, and we will see the proof of

Mengers theorem using max flow min cut theorem.
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Network and flows  consider  a  network  of  pipes  where  valves  allow flow in only  1

direction, each pipe has a capacity per unit time, we can model this with the vertex for

each junction and the directed edge for each pipe,  weighted by the capacity  we also

assume that flow cannot accumulate at the junction.

Let us see this kind of model can be represented in a form of a network. So, given two

locations s and t in the network we may ask what is the maximum flow per unit time

from s to t, so this question arises in many context the network may represent the roads,

with  the  traffic  capacities,  or  links  in  a  computer  network  with  data  transmission

capacities,  or  the  currents  in  electrical  network,  there  are  applications  in  industrial

settings and to the combinatorial min max theorems. So, here we can add the capacities,

which can be defined as per the different applications.
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So, the network is a directed graph let us see that these edges which are connecting the

nodes are having a direction, and also each edge is having a capacity which is denoted by

c of e, and there is a distinguished source and sink vertex s and t they are denoted as. The

vertices are called here the nodes. So, modeling a particular network, in this particular

format is nothing, but a network n. So, for any given graph we can convert it  into a

network, in this particular setting and then we can it can be used up for the study of

network flow problems.
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So, the flow f assigns a value to each edge so, in the previous figure if you see s and t.

So, each edge is having a capacity and also we can assign a flow value a particular edge.

So, every edge will have these 2 values assigned that is the flow on the edge e which is

basically represented f of e. Let f plus be the total flow on the edges leaving v, and f

minus be the total  flow on the edges entering  v, a flow is  feasible  if  it  satisfies  the

capacity  constraints  so;  that  means,  the  value  of  the  flow is  upper  bounded  by  the

capacity of that particular edge which is defined so; obviously, here in this particular

scenario the value of the flow is basically bounded by or at most c e on particular edge.

So,  every  edge has  this  capacity  defined,  and  the  flow which  will  be  there  on  that

particular edge will be at most that particular value, and also the flow is basically non

negative hence it is greater than or equal to 0 and so on. Now the flow also satisfies

besides capacity constraints, another constraint which is called a conservation constraint.

So, conservation constraints says that the flow for each node other than source and sink.

So, the value of the flow out for a node v should be equal to the flow which is into the

node, hence f plus that is the flow out on a particular node is equal to f the flow which is

in to the particular node other than source and sink.

So,  again  let  us  recall  that  there  is  a  flow, which  is  defined  on each edge and this

particular flow is feasible if it  satisfies the capacity constraints, and also satisfies the

conservation constraints that we have defined.
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So, maximum network flow the value of the flow that is val of f of a flow f is the net

flow that is the flow out from, that particular sink to be subtracted from in to the sink.

Now if the flow there is no out from the sink, then it is nothing, but the flow value which

is the entering into the sink, if there is no flow out from the sink, then the value of the

flow is equal to flow which is entering into the sink. Now, the max flow is the feasible

flow of the maximum value that is called the maximum flow. 
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Let us take this particular example graph which has a flow value equal to 0 assigned to

each edge and this is also a feasible flow. So, every edge the capacity is 2, and the flow is

0. So, it satisfies a feasible flow satisfies the capacity constraints meaning to say that

here in; for example, in the edge s u the capacity of this particular edge is 2 and the

amount  of  flow  is  0,  hence  this  particular  capacity  constraint  is  satisfied  on  this

particular.

Similarly in all of the edges this is satisfied, second condition for a flow to be feasible is

that conservation constraint is satisfied should be satisfied for example, in this particular

node u, for a particular node u, let us consider that the value of f u plus equal to f minus

and here, the flow in both the sides, is 0 hence conservation constraint is also satisfied,

therefore the 0 flow that is the total flow which basically will go to the sink. That is the

total flow is equal to 0 hence this is the feasible flow, and this is the example of the

network with a flow of 0 value, example of a maximum flow.
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So, here in this particular network we will illustrate that it has the nonzero feasible flow,

the capacities are shown as the bold, and the flow is shown within the bracket it is the

flow on the edge. So, our flow f assigns f of s x here that is equal to the flow on v t, and

both are 0 here in this case. Similarly f 1 and edge e is 1, this edge it is 1 this edge also it

is 1, this edge it is 1, and this edge is 1 for every other edge of this network. Hence this is

a feasible flow of value 1, example of a maximum flow here.
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The path from source to sink with excess capacity would allow us to increase the flow in

this example no path remains with the access capacity, but a flow f prime with f prime v

x is equal to 0, and f prime e is equal to 1. Now for e which is not equal to v x has the

value 2.

So, let us take an example here in this particular case, we can see on this particular edge

the capacity is 2 and the flow is 0. So, there is a residual capacity to inject a flow on this

particular edge, similarly this particular edge also has the residual capacity. Now it has a

flow from v to x hence from x to v we can do a back flow, or we can also say it is a

reverse flow possible and that capacity is 1. So, if you take a path from s to x and x to v

and from v to t.

So, this particular s to x we have the capacity of 2 from x to v there is a capacity of 1,

and from v to t there is a capacity of 2. So, we can inject the minimum of all these values

that is 1 a flow of 1 unit can be injected from source to the sink, via this particular path.

So, if we do then basically you see that here the value of the flow is changed from 0 to 1,

and here since it is a back flow. So, 1 will become 0 here in this case.

Similarly, here  the  flow will  become 1,  and through this  particular  path  the  flow is

injected, and the amount of flow in this particular network it will be now this particular

flow is 1 and this flow is 1. So, total flow in this network is 1 plus 1 that becomes equal

to 2 units of flow, and that is the maximum flow possible.
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Now, we have seen that we have identified a path through which we can inject a flow

into the network or the residual capacity. So, that kind of path is called augmenting path,

let us see the definition when f is a feasible flow in the network n, and f augmenting path

is a source to sink path in the underlying graph G such that for each edge on the path

that, if P follows E in the forward direction, then it has to follow this particular capacity

constraint, and if P follows E that is in the backward direction,  then there must be a

nonzero flow on that particular edge.

Now, let epsilon is nothing, but the residual capacity that is c e minus f e when e is a

forward direction on P, and let epsilon is equal to f e when e is in the backward direction

on P. So, the tolerance of that particular flow or a path is nothing, but the minimum of for

all the edges on that particular path that particular epsilon values, and that is called a

tolerance. In the previous slide we have seen how to compute this particular tolerance.

So, here this is nothing, but we have computed the tolerance,  we have computed the

tolerance that is by these are the epsilon values, and this particular minimum of epsilon is

nothing but the tolerance, and this amount of values is injected onto the path, and the

path is and this particular value is basically introduce as an additional flow of 1 unit. So,

f augmenting path is this particular process of identifying what is the maximum amount

of flow which can be undertaken on a particular path, and that is called f augmenting

path.
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Now, when a new flow is injected through an augmenting path so, let us see what are the

changes in the network will takes place, the edges are p incident to the internal vertex v

of P occurs in 1 direction of the 4 different ways shown below, in each case the change to

the flow out of v is the same as the change to the flow into v. Hence this is the flow out,

this is the flow in, and that should be equal to the same for ensuring the property which

we have designated as conservation constraint.
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Now,  let  us  see  the  examples  of  all  these  4  different  cases  when  a  new  flow  of

augmenting is basically carried out. So, here you consider the capacity is 6 and current

flow is 4. So, there is a possibility of 2 units to be injected here. Similarly 20 unit is also

flow is also there. So, basically here we can see that ten unit; that means, there is a slack

of 6 units and so on.

So, so if we take the minimum of all these slack units it becomes 2 units we can inject.

So, the 2 units are injected. So, here the flow in this particular which will enter is equal

to the to the capacity, and the slack will become 0 here in this case, the flow of 10 will

become 12, and here the flow of 5 will become 7 here in this case, and these symbols are

shown over here; that means, there is a possibility of forward direction flow on each

vertex is possible.



(Refer Slide Time: 18:49)

Now, there is another example here we can see that on the forward direction there is a

possibility of plus k, in this particular vertex also there is a possibility of plus k, then on

this particular vertex there is also a possibility of minus k, and this is a minus k and plus

k.  So,  the  symbols  which  we have  shown is  a  plus  k  and plus  k,  similarly  another

possibilities another case is plus k and minus k, and this is another condition where it is

minus and minus, and this particular condition shows it is plus and it is minus. So, all 4

cases we can see here in this augmenting path to be illustrated.
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Let us take another example here we can see here the total inflow is 6 plus 12 that is 18,

and total outflow is 15 plus 3 that is 18 that is the conservation constraint is satisfied. So,

let us see that if we can figure out what is that minimum value of that capacity constraint,

the capacity is 9 the total flow here is undertaken is 6. So, there is a possibility of 3 units

of residual capacity here, also there is a possibility of 5 units of capacity here, there is a 6

units of reverse flow possible, 4 units of reverse flow possible and 7 units of reverse flow

possible. So, if you take the minimum. So, 3 more 3 units of more amount of flow which

can be injected, hence the f augmenting path like this will allow 3 more units of the flow

after doing that the flow values are changed accordingly that we are now seeing.

So, 4 will become 7, 4 will become 1, why because 3 unit will be subtracted it is a

reverse edge 6 unit will become 3 why because 3 units will be subtracted, because this is

the reverse edge or a back edge. Now here 3 will become 6 because it is a forward edge,

6 will become 9 why because it is a forward edge. So, after the augmenting the new flow

will  be introduced into  the  network.  So,  lemma P is  an  f  augmenting  path  with the

tolerance z.
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Then changing the flow by plus z on the edges forward by P, and minus z on the edges

followed backward by P produces a feasible flow f prime with the value of value of flow

f prime is equal to the value of f plus z that we have seen in the previous example. Let us



see  the  proof  the  definition  of  the  tolerance  ensures  that,  the  capacity  constraint  is

ensured for every edge. So, the capacity constraint holds.

So, we need only check the vertices of P since the flow elsewhere has not changed. Now

for every vertex v conservation constraint is being followed. So, the amount of flow

which is in equal to the amount of flow which will be exited from a particular vertex

finally, the net flow into the sink t will be increased by this z value, that example we

have seen earlier and that is also shown here in this particular picture.
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Source and sink cut so, in a network source a sink cut that is also called S T cut. 

So, S T cut is nothing, but which is denoted as S comma T consists of the edges from the

source set S and to a sink set P, where S and T partition the set of nodes with all the

nodes small S belongs to S and P belong to T that means, source this is source node

belong to 1 set that is S, and this is the sink node belong to T. So, all the other nodes are

partitioned in S and T, and that is called basically S T partitions. So, the capacity of this

particular S T cut is written as the capacity of S T is the total capacity on the edges of S

and T; that means, the total capacities of the edges which crosses from S and T.

So, we can see over here S and T. So, all the edges which they crosses their capacities, if

we sum them in the forward direction, then it is called the capacity of S T in the forward

directions only. So, keep in mind that in a digraph S T denotes the set of edges with the



tail in S that I told you, and the head in T that is only the forward direction, edges thus

the capacity of S T cut is completely unaffected by the edges from T to S; that means, it

is unaffected by the back edge capacities. 
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Ford Fulkerson labeling algorithm for max flow, in this algorithm the input is a feasible

flow f in a network, and the output is an f augmenting path or a cut with a capacity value

of f. So, idea of this algorithm is to find the node reachable from S by the path with the

positive tolerance, reaching T completes an f augmenting path. Now during the search R

is the set of the nodes labeled as the reached, and s is the subset of R which are labeled as

searched; Ford Fulkerson labeling algorithm.
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Initialization we will initialize the 2 sets are that is called reached, the another set S

which is called searched set. So, initialized with s and this is initialized with phi.

Now, in the iteration let us choose a node v which is in R minus S, this is R and this is S.

Now for each exiting edge v w with the capacity f v w is less than c of v w and w is not

in R, then we add w to R; that means, we have reached to w in this labeling algorithm

from v, because there is a capacity in the forward direction. Now for entering an edge u v

with f u v with having the flow f u v is non zero; that means, some flow is there, and u is

not in reached then we have to add u in R.

So, this indicates the back flow along the f augmenting path. Now label  each vertex

added to R as the reached and record v as the vertex reaching it; that means, from which

it has reached, after exploring all the edges at v add v to S. Now if sink R has been

reached put in T put in R, and then trace the path reaching t to report the a f augmenting

path and terminate. Now if r is equal to S then return the cut that is S and S prime, and

terminate why because there is no f augmenting path.

So, we have to return the min cut. Otherwise we have to iterate, as long as f augmenting

path is available the algorithm will iterate, and as soon as all the augment there is no

augmenting path, then it will terminate and report the min cut of the network theorem,

max flow min cut theorem.
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So, in every network the maximum value of a feasible flow equals the minimum capacity

of the S T cut. So, the proof says that in max flow problem the 0 flow is always a feasible

flow that we have seen, and gives us a place to start. Now given a feasible flow we apply

the  labeling  algorithm,  we  have  seen  in  the  previous  slide  that  is  Ford  Fulkerson

algorithm.  It  iteratively  add  the  vertices  to  S  that  is  each  vertex  at  most  once  and

terminate with t when it reached, and that is why t is an element of R, and then we say it

is  a back through; that  means,  we have identified an augmenting path which is  also

called as a breakthrough here, or if it is not a augmenting path then S is equal to R, and

we you have to report with a min cut.

So, in the breakthrough case; that means, when we have identified a augmenting path we

have an f  augmenting  path and increase  the flow value,  we then repeat  the labeling

algorithm when the capacities are rational the each augmentation increases the flow by

multiple of 1 by a where a is the least common multiple of the denominators. So, after

finitely many argumentation the capacity of some cut is reached the labeling algorithm

that terminates with S minus S is equal to R.
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When terminating this way we claim that S T is the source to sink cut that is S T with the

capacity of that cut is nothing, but a value f and f is the present flow it is the cut because

source belongs to big S, and T does not belong to R is equal to S.

Since applying the labeling algorithm to the flow introduces no node of t into R no edge

from S to T has access capacity, and no edge from T to S has non 0 flow in f hence f plus

S; that means, the flow out of flow out of S this is nothing but the capacity of S T cut,

and the flow inflow of S is equal to 0. 

Since the net flow out of any set contains containing the source, but not the sink is the

value of f, hence we have proved that the value of f is nothing but the flow out of source,

and flow into the source is  0,  hence  the total  flow out  of source is  nothing but  the

capacity of the S T  cut  in  the  network,  and  that  becomes  the  max  flow  value

examples of a Ford Fulkerson algorithm.
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Let us apply the Ford Fulkerson algorithm to determine the value of the maximum flow

from source to sink, sources as an sink is y. So, here let us see the conventions that this is

the network, wherein the capacities which are placed on the edge are shown here, direct

values and the flow value is shown within the bracket, which are there in the network.

So, with this let us see the application of a Ford Fulkerson algorithm.
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Now here in this particular network, we see that from x we can reach to a or we can go to

d, or it is already. So, from x we can either go to a, or we can go to d. 

Now, x a has the residual capacity because the capacity is 3 and the flow is 0. So, it can

undertake 3 units of flow, similarly d also can take 3 units of flow. Now from a we can

go to b, and we can also go to d. So, from b from a we can go to b why because there is a

possibility of residual capacity of 1 unit.  Now from b we can go to y. So, there is a

augmenting path x a by here there is a 3 unit of flow possible between x a between a b,

there is a 1 unit of flow possible and between by there is a 3 unit of flow.

So, the minimum value that is called epsilon is the minimum of all these that is called

tolerance that is nothing but 1 unit. So, 1 unit of flow is possible let us inject that, now

we will see again through d. So, 3 that means there is a possibility with x d to take a flow

from d to c also there is a possibility to take a flow, and from c to y also there is a

possibility to take a flow. So, this will become x d c and y. Now here x d has the capacity

3 of residual, and d c has capacity of 1, and c y has capacity of 3. So, minimum value

becomes 1.

So, let us introduce this particular flow in the network. Now let us go ahead again and

see an any other augmenting path available or not. So, from x we can go to a, or we can

go to d. So, if we go to a then this particular path is already saturated a b is saturated. So,

we cannot go ahead from a, from a we can go to d, and from d again we see there is a



saturated there is no saturated path. So, d also we cannot have any progress, similarly

from x to d if we go then from d we cannot make any progress.

So, here we stop and we have to take the S T cut. So, the total amount of flow will

become the S T cut that is nothing, but the total value which will basically out from the

source that is or that is nothing, but the total amount of flow which will go into the sink

all are equal. So, let us see that f plus s we can calculate that is 1 plus 1 that equal to 2.

So, that is the total maximum flow in this particular network is 2, and that is all shown

over here whatever we have already done. So, total flow in this particular example is 2.

Let  us  take  another  example  let  us  find  out  the  maximum  flow. Now  here  in  this

particular example we can see that we can go there is a possibility, we can reach a we can

reach b also because a b also, there is a capacity but from b we cannot go to y, because

there is no flow which is being undertaken from y to b. So, here we stop so from b we

cannot go ahead. 

Now there is another way from a we can come down let us say that this is c and from c

we can go to b, but from b we cannot go ahead. So, there is no possibility from these

particular ends to undertake the flow hence, the max flow will be equal to the S T cut,

why because there is no augmenting path, and that is nothing but the flow will be 0

which is there in this particular network.
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Now, in the another example let us find out the max flow in this network using Ford

Fulkerson.
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Let us directly go and see this particular work worked out solution, for this particular

problem. So, 1 such augmenting path which can introduce a flow of 2 which is injected,

and that is x, then c, then b, and then from b we cannot go to y because this particular

forward link is saturated, but we can go to a why because there is a flow from a to b. So,

we can introduce a back flow, and we can come to a. So, from a we can go to e through

the forward edge and from e we can go to y, and this  particular  way if we take the

minimum of all this particular flow. So, the flow of 2 unit is being introduced.

Now, from x we can go to a, from a we can go to e, and from e we can go to y in this

way we can also introduce 1 more flow. So, when there is no augmenting path we will

find out the min cut, and that will be the maximum flow which will be working out in the

network. Now we will see the Mengers theorem, and we will see the proof of Mengers

theorem using max flow min cut theorem.
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So, this is the idea that lets go ahead and see the Mengers theorem of the vertex version,

that  says that  if  x and y be the 2 distinct  vertices  in  the connected  graph, such that

between x and y there is no direct edge, then kappa of x y is equal to lambda of x y. Let

us see the proof of this particular theorem.

So, to prove this kappa x y is equal to lambda x y in the Menger theorem, what we will

do is we will show this particular proof by two different steps. In the first step we will

show that lambda x y is less than or equal to kappa x y, and then we will show that kappa



x y is greater than or equal to lambda x y using max flow min cut. So, kappa x y you may

be knowing it is a minimum size of x y cut, and lambda x y is basically the maximum

number of vertex disjoint or internally disjoint x y path. So, let us see the first one where

lambda x y is less than or equal to kappa x y.
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Now, if you take a x y cut let us call it as U; that means, in x and y the set of vertices let

us call  it  as U, then if  we remove it  then x and y they become disconnected,  when

remove from the graph then it becomes disconnected hence, this U is nothing, but it is an

x y cut. Now if it is an x y cut, then every x y path must go through U, a vertex in U. The

other path also will go to y through a distinct vertex in U why distinct, because these

paths are internally disjoint paths that is between x and y. So, they are internally disjoint

that means, no vertex can be common hence; that means, all the paths which will go

from x to y they will be internally disjoint paths and all the vertices will be distinct.

So, how many such vertices will be present at least that means, 1 from each particular

path, if we take so that means, the if we count how many different paths will be there

between x to y that will be nothing but the size of this particular U, and this size of U is

nothing but this is called x y minimum x y cut. Hence this path of the of the theorem is

proved the other path we have to see that is kappa x y is less than or equal to lambda x y.

Now this we are going to prove using max flow, and min cut theorem. 
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Now, to prove this using max flow min cut theorem the underlying graph, we have to

transform, it into a network to do this we will follow some steps. So, step number 1, so

we will construct a network N let us call N out of this particular graph G. So, whenever

there is a network as far as max flow min cut theorem there are 2 designated vertices,

which are designated as source and sink. Let us say that x and y they are the source and

sink respectively. 

So, here x and y they become source and y become sink of the network, the second part

says that for each edge u v each edge of a graph, we will add 2 directed arcs u v and v w

that is let us take an example that if there is a edge a b, then we have to add 2 arcs a to b

and b to a with these particular directions. 

Similarly, all other edges will be transformed in this particular manner, let us do it again

for c y between c and y there will be an edge from c to y, and from y to c so, we will

transform this graph into this particular network, this is the step number 1. Let us see the

second step.
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In step number 2, what we will do we will take every vertex which is not the source and

sink, and we will split this particular vertex w into two vertices w plus and w minus, and

we will place an edge between them from w minus to w plus this edge is called internal

arc of the network.

Now, other arcs will be replaced by u plus that means, other arc means other than other

than this internal arc all other arcs which are present in the graph, or in the network

which we have obtained in a step number 1, will be replaced by from u plus there will be

an edge to v minus, if u and v they are not neither it is source nor sink. So, from u plus to

v minus we have to add an edge. Similarly if u is a source or a sink, then this edge will

be from u to v minus. Similarly if v is a source of sink, then there will be an edge from u

plus to v. So, there are 3 different type of edges we will include, and we will split the

node, and we will add internal arc now, after doing this we will obtain a network. 
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And then we will now place the capacities; that means, for every internal arc we will we

will add a capacity of 1. So, internal arc if you recall it is from a minus to a plus b minus

to b plus c minus to c plus there are 3 different internal  arcs, the capacities we will

include  as  1,  and all  other  edges  will  have  the  capacity  of  N.  So,  in  this  particular

example here N is equal to 5. So, capacity of 5 will be included. So, this is the third step.

So, after third step we will obtain this network out of this particular graph.
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So, we will see the observation that every vertex of the form w minus has exactly 1 arc

going out from it that is this arc is present, but only 1 arc will be between w minus to w

plus. Similarly, every vertex of the form w plus has exactly 1 arc coming into it, and

which is an internal arc. So, if this is w minus, and this is w plus so, 1 arc is going out

from w minus similarly 1 arc is coming into w plus which is an internal arc.

So, only 1 internal arc is present between w minus to w plus. Now what we will do is we

will show to prove that kappa x y is less than lambda x y using the network, and which

we have formed, we will use it to show that kappa x y is less than or equal to lambda x y

to show kappa x y less than lambda x y, we will again further take 2 steps, step number 1

we will show that lambda x y is at least max flow, and then we will show in step number

2 that kappa x y is at most min cut. 

And then what we will do is you know that max flow is equal to min cut, now you know

that if we can prove that kappa x y is at most min cut, and min cut is equal to max flow

by that particular theorem, and also we know that the max flow is less than or equal to

lambda x y therefore, we can show that kappa x y is less than lambda x y.

So, hence it remains to show that lambda x y is greater than or equal to max flow, and

also it remains to show that kappa x y is less than or equal to max min cut. So, these 2

things we are showing, we are going to show and once we will show that then basically

the theorem will be proved or you will prove that kappa x y is less than or equal to

lambda x y, and Menger theorem will be proved accordingly.
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Let us see the first thing let us see the first part of this particular proof that lambda x y is

greater than or equal to max flow. Now, in the network and which we have formed let m

be the maximum flow, and the value of that maximum flow is let us say some value that

is m. Now if there is a flow into u minus, then that value must be 1, why because we

have internal vertices, there will be only 1 internal vertices from u minus it will go to u

plus  and that  capacity  is  1,  the  previous  observation.  So,  this  if  we trace  back  this

particular flow of 1 unit, then we will find that this 1 unit must travel from x to y that is

from source to the sink.

So, if m units are there so m unit flow will transfer me to m different internally disjoint x

y paths. So, this is 1 such paths similarly other such paths must also be there, let us say u

2 minus to u 2 plus and so on. So, there are m internally disjoint path must be there from

x to y hence, lambda means lambda x y is nothing, but internally disjoint paths. So, if m

are there so the value of lambda must be at least m, and m is nothing but the maximum

flow that we have assumed hence we have proved that lambda x y is at least the max

flow.
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Now, we will see the remaining part of this particular proof which will see that we have

to show that kappa x y is at most the min cut of that network. Now let us take an S T cut

that is the minimum cut in the network N. So, here if you see an S T cut what we will

find out the arcs which will go from S to T they belong to the internal arc only that is u

minus to u plus, and each is having the capacity of 1 therefore, an S T cut is basically of

size the capacity of S T cut is let us say k.

Now, let us see that if let us say that the capacity of S T cut K, then in that case it should

be less than is less than n why because x and y. So, n is the total number of nodes minus

2, then the capacity should be n minus 2 at most hence strictly it is less than n. Now if

some other edges other than the internal edge, basically is present with the capacity let us

say n which we have included, then this capacity will not follow this particular bound,

then the capacity of k will be greater than or equal to n, we will come to the contradiction

hence it is not possible that other than internal edge or non internal edge will be a part of

S T cut.
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So, this particular thing we can see through this particular example that if we find out the

S T cut. So, only the internal edges are involved, and each internal edge is having a

capacity of 1. So, that capacity of this S T cut is bounded by n minus 2 that is strictly less

than N.
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Let us take the S T cut K of minimum size.
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In the network and we will  see that  this  particular  capacity  of  that  minimum cut  is

nothing but U. So, what we will do is we will construct a U. So, U is nothing but they are

the  number  of  vertices  and u  minus  is  there  in  S  and u  plus  is  there  in  T. So,  the

cardinality of U is nothing but the capacity of K, and that is nothing but the minimum cut

and we will show that U is an x y cut in G, and that will prove that kappa x and y is at

most the size of U and which is nothing, but the capacity of that K and that is nothing,

but the minimum cut. 
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So, that is to be constructed then you will have different paths. So path we will start from

source to sink followed by different internal vertices u 1 u 2 and so on up to u t. Now in

this particular path if you see the network, we will have a directed path corresponding.

So, starting from the source it will be happening an edge from x to u minus, and from u

minus to u plus this is an internal edge, this arc we have already defined that it will if it is

from source so; that means, u 2 u minus so basically source to u minus it will enter and

so on. Similarly, here in the last arc will be from u plus to y.
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Now, if you delete these nodes then it will disconnect S and T hence it is an S T cut.
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So, deleting the internal arcs from S to T will break the path transforming back to G

deleting these vertices in U from G will separate x and y hence u is an x y cut of G

therefore, we have shown that kappa x y is at most the minimum cut hence, we have

proved this particular theorem conclusion.
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In this lecture we have discussed the network flow problems maximum network flows, f

augmenting path, Ford Fulkerson labeling algorithm, we have seen the examples based

on Ford Fulkerson labeling algorithm, Max flow min cut theorem, proof of Mengers



theorem, using Max flow min cut theorem. Upcoming lectures, we will discuss Graph

Coloring, Vertex Coloring and Upper Bounds.

Thank you. 


