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Recap of Previous Lecture:

In previous lecture, we have discussed Connectivity
i.e. vertex connectivity, edge connectivity, bond, blocks
and also discuss the theorems based on the cuts and
connectivity.

Content of this Lecture:
In this lecture, we will discuss the k-Connected Graphs.
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K Connected Graphs. Recap of previous lecture we have discussed connectivity that is
what is connectivity, edge connectivity, we have also covered bonds blocks, and discuss

the theorems are based on cuts and connectivity, content of this lecture.
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k-Connected Graphs

e A communication network is fault-tolerant if it has
alternative paths between vertices: the more disjoint
paths, the better.

e INn this lecture, we will prove that this alternative
measure of connection is essentially the same as
k-connectedness. When k=1, the definition already
states that a graph G is l-connected iff each pair of
vertices is connected Mh_ For larger k the
equivalence is more SUbtlE.lﬂ“AdT,} — 7= frffcf-u,uﬁf&__‘)

- F-L,}} | VK - Copnected Fi,
" {Z?mwmﬁctclmd"puu_{]
Advanced Graph Theory K-Connected Graphs

We will discuss k connected graphs, k connected graphs [noise] are used to ensure the

fault tolerance in the communication network or similar such applications. [vocalized-

noise]

So, a communication network is fault-tolerant out, and it has alternative paths between
[noise] vertices, the more disjoint paths [noise] the better the network is in terms of
reliability so, but it requires the extra redundancy in terms of the vertices, and the paths
that we will see, [vocalized-noise] in this lecture we will prove [noise] that this
alternative measure of connection is essentially the same as k connectedness. So, k
connectedness will basically bring up [noise] the fault tolerance in the communication

network graph or similar such applications.

Now, when k becomes 1 that is [noise] 1 connected graphs, we have already discussed.
So, a graph is 1 connected if and only if each pair of vertices is connected by a path that
definition we have already seen the connectedness. So, the if the entire graph is
connected between any 2 pair of vertices, if there is a path then we can generalize this
[noise] 1 connectedness in terms of k a larger value of k; that means, k is greater than or

equal to 1 than [noise] we define [noise] k connected graphs. [noise]

So, like in 1 connected graph between any pair of vertices there is a path, [noise] there is

1 path for every [noise] pair of vertices [noise] in the graph [noise] that we have seen for



[noise] 1 connected [noise] graph, we can extend it to k connected graphs, thus [noise]
we can see how we can ensure k different paths that is vertex [noise] disjoint, [noise] or
internally disjoint. [noise] Hence [noise] the discussion of k connected graphs for a larger
value of k is more subtle, [noise] and these intricacies we will go and discuss in this

particular lecture.
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2-Connected Graphs

e Definition: Two paths from u to v are internally
disjoint if they have no common internal
vertex.

e Example: 2-Connected Graph
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So, the starting with a more value of k that is more than 1 that is let us start with the 2
connected graphs. So, when k is equal to 2. So, it becomes [noise] 2 connected [noise]
graphs [vocalized-noise] the definition says that two path from u to v are internally
disjoint, if they have no common internal vertex. So, this definition is to provide the
connectivity between a pair of vertices let us say u and v [noise] in a graph. So, we can
see in this particular diagram that for u and v we have two different paths, 1 is from u to

v the other is again internally disjoint two different paths are connecting u and v.

Similarly, if let us say this particular vertex is w [vocalized-noise] if w and v also can be
connected with 2 internally disjoint paths. Similarly u and w also it can be connected so;
that means, for every pair of vertices [noise] for every pair of vertices, [noise] if we can
show that there exist two paths [noise] two [noise] internally disjoint [noise] paths, then

for the entire graph G we can say that it is [noise] 2 connected [noise] graph. [noise]



So, hence the connectivity is very important. So, as we increase the value of k we have to
ensure that that many number of internally disjoint paths exist between any 2 pair of
vertices, then only the entire graph will take this particular property of that value of k
connectedness, here in this example we have seen 2 connected graphs [noise] [vocalized-
noise] with this particular [noise] simple example, we will go ahead and characterize 2

connected graphs later on. [vocalized-noise]
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Theorem a.2.2

e (Whitney [1932]) A graph G having at least three vertices is
x._?—connected if and only if for each pair u, v € V(G) there exist
internally disjoint u, v-paths in G. -

e = w &= " e
I at o uru}r'h”f_"’!

Proof: Sufficiency: When G has internally disjoint u, v-paths,
deletion of one vertex cannot separate v from wv. Since this
condition is given for every pair u, v, deletion of one vertex
cannot make any vertex unreachable from any other
We conclude that G is 2-connected.
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Whitney in 1932 has given a theorem for 2 connected graphs characterization, [noise]
So, theorem is stated as a graph G having at least three vertices is 2 connected, if and
only for each pair u v of a vertex set of a graph, there exist internally disjoint u v paths in
G Whitney in 1932 has given this particular theorem, this is this will characterize the 2
connected graph; that means, 2 connected graphs for a graph G exist, if and only if each
pair of this particular graph has internally disjoint u v pair of [noise] paths is totally

disjoint here there are two different paths we are talking about.

Let us prove this theorem [noise] which will characterize [noise] [vocalized-noise] or we
will make equivalent statement that to connected [vocalized-noise] graph means that they

are exist internally disjoint u v path between any 2 pair of vertices of that particular



graph. Let us see the proof [vocalized-noise] first we will see the sufficiency [noise]

condition.
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Theorem a2z

e (Whitney [1932]) A graph G having at least three vertices_i_S
E:Eonnected if and only if for each pair u, v € V(G) there exist
internally disjoint u, v-paths in G.

B oavne e ’
Proof: Sufficiency: When G has internally disjoint u, v-paths,

J deletion of one vertex cannot separate u from v. Since this
condition is given for every pair u, v, deletion of one vertex
cannot make any vertex unreachable from any other
We conclude that G is 2-connected.
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So, in sufficiency condition let us assume that there exist internally disjoint u v paths.
[noise] Let us assume [noise] or we are given this [noise] that G has internally disjoint u

v path so this part.

[vocalized-noise] So, now we can see that if we delete one vertex then [noise] we cannot
separate u from v, [vocalized-noise] that means u and v [noise] they are internally
disjoint paths, if one vertex is deleted or removed there will be an alternative path
between u and v. So, u and we will not be disconnected, if we remove it since this
condition is given for every pair [noise] u v. So, deletion of one vertex cannot make any
vertex unreachable from each other, hence we conclude that the graph is to connect it
[noise] given that G has the internally disjoint u v path between every two pair of

vertices.

Now, we will see the necessary condition. So, necessary condition we will see that
[noise] we will assume that a graph [noise] G is 2 connected and we have to prove that it,

then that graph there exist internally disjoint u v paths for every pair of vertices.



(Refer Slide Time: 09:19).

Proof continue

Mecassity: Suppose that G is 2-connected. We prove by induction on d{u,v) that G has
internally dis.jc:intf, v -paths. BT -

Basis step (d(u, v) = 1). When d(u,v)=1, the graph G-uv is connected, since x’(G)z k(G)=22.
A u,v-path in G-uv is internally disjoint in,&_x_{{;::m the u, v-path formed by the edge
uv itself a5 T -*/f. e C L \ur

Induction step (diu,v) > 1). Let k=d(u,v). Let w be the vertex before v on a shortest
u,v-path; we have dtu.w}nk-lm induction hypothesis, G has internally disjoint
uw-paths P and Q. If v € V(P) U V(Q), then we find the desired paths in the cycle
P U Q. Suppose not. oy
Since G is LZ_—GDI"II"IE,'C.'(EEL G-w is connected and contains a u,v-path R. If R avoids P or
Q, we are done, but R may share internal vertices with both P and Q. Let z be the last
vertex of R (before v) belonging to P U Q. By symmetry, we may assume that z € P.
We combine the u, z-subpath of P with the z, v-subpath of R to obtain a u,v-path
internally disjoint from Q U w wv. d

g

i ]
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So, necessary condition we will assume that the graph is to connected, [vocalized-noise]
to prove that the graph has internally disjoint paths [noise] between any pair of vertices u
v between every pair of vertices u v, we will prove by induction on the distance between

u v that G has internally disjoint u v paths.

So, the basis step [noise] assumes that the distance between uand vis 1. Now we have
also seen that or we have already assume that the graph has at least three vertices.
[vocalized-noise] So, if the distance between u and v is 1 there must exist another vertex,
and if we delete this particular edge from the graph. So, the graph without u v will have
another path. [noise] Hence the kappa prime is greater than kappa is greater than 2. So,
the u v path in G minus u v is internally disjoint in G [noise] from u to v formed by an
edge in u v itself. [noise] So, this particular base step is clear, because if we remove 1
particular edge even then these pair of vertices is connected through a internally disjoint

paths which exist in the original graph G. [vocalized-noise]

Now we will [noise] see the induction step that D u v is greater than 1 assume that
[noise] D u v is k; that means, and w be the vertex. [noise] [vocalized-noise] So, u and v
they are basically separated by the distance k, and that [noise] is greater than 1. let us

assume that there is the vertex [noise] w which is just before v on the shortest u v path,




[noise] hence [noise] this part of the shortest path up to [noise] u to w will have the
distance [noise] k minus 1 why because, w is closer to v. So, the remaining path will be

having the distance of k minus 1. [noise]

[vocalized-noise] So, by induction hypothesis we can assume that this G has internally u
w paths [noise] which are internally disjoint paths, internally disjoint u w paths let us call
it as P U to w, and another path [noise] internally disjoint is let us say Q which will
connect U to w having that distance k minus 1. Now if this particular vertex v is an
element of or having an element v in it; that means, these path or these particular disjoint
paths will also include v, then we can find the desired path in the cycle P union suppose it

is not there in this particular example we are shown.

Then since G is to connected that we have assumed. So, G minus w is connected and
contains ah u v path R, if R avoids P R Q, then we are done because this will be a one
path w to v and u to w, we have disjoint paths. And another alternative path will be there
R if it is not using if it avoids P or Q then we are done, but R means here by internal
vertices with both P and Q let z be the the last vertex of our before b belonging to P

union Q; that means, belonging to this particular cycle.

So, by symmetry we may assume that z is n P. So, we combine u z of P [noise] plus z v
of R. [noise] So, if we combine them it will give the two internally disjoint paths, [noise]
one is shown in this way the other is why a Q up to w and w to v, there are two internally
disjoint paths this is one path, this is another [noise] path and no vertices is internally
disjoint. Hence we have shown that if the graph is to connected, then there is we have
shown that to the induction that for all values of 2 this will be internally disjoint paths

exist in the graph.
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Lemma (Expansion Lemma) sz

e If G is a k-connected graph, and G’ is obtained from G by
adding a new vertex v with at least k neighbors in G, then
G’ is k-connected.

Proof: We prove that a separating set S of G’ must have
size at |least k. If ye S, then S-{y} separates G, so |S|= k+1,
If v & S and N(y) = S, then |S| = k. Otherwise, v and N(y)-5
lie in a single component of G'-S. Thus again S must
separate G and |S| = k.

G y

Advanced Graph Theory K-Connected Graphs

Expansion lemma if G is k connected graph, [noise] and G prime is obtained from G by

[noise] adding a new vertex y with at least k neighbors in G, then [noise] G prime is k

connected. [noise]

So, let us see the proof quickly will not go in more detail. So, in this particular proof we
will see that [vocalized-noise] the separating set of G prime, must be have size at least k
y because it is k connected graph. So, if y will be in that separating set, [vocalized-noise]
then S minus y will separate G. So, the size of S will be k plus 1, if y is not in S and
[noise] the neighbor of y is basically belongs to S, then S is at least k. Otherwise y
[noise] and N y neighbor of y minus S lie in the same single component of G prime S,
[noise] thus again S must be separate G and the separating set size is at least k hence it is

k connected, hence G prime is also k connected.
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Theorema.z.a

For a graph G with at least three vertices, the following
conditions are equivalent (and characterize 2-connected
graphs).

A) G is connected and has no cut-vertex.
B) For all x, ye V(G), there are internally disjoint x, y-paths.
C) For all x, ye V(G), there is a cycle through x and v.

D) &6(G) =2 1, and every pair of edges in G lies on a
common cycle.
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Now, we will see the theorem. So, this theorem will characterize to [vocalized-noise]
connected graphs. So, for a graph G with at least three vertices the following conditions
are equivalent, and characterize 2 connected graphs that is [noise] the first condition says
that G is connected and has no cut vertex. The second condition says that for all x y pair
of vertices which are there in the vertex set of G, there are internally disjoint x y path, for
all x y there are vertices which are there in the vertex set of G there is a cycle, which
passes through x and y. And finally, the last statement which will characterize to
connected graphs, and equivalent to all the three is if little delta of G is greater than 1
greater than or equal to 1, and every pair of edges in G lies on a common cycle, then it

will also characterize 2 connected graphs.

Let us see they are equivalence. So, A is equivalent to B that means, if a graph is
connected and has no cut vertex, if a graph is connected and has is no cut vertex, this will
be cut vertex if it has no cut vertex then there will be internally disjoint paths, hence
from A we have proved the B and from B, if there is no if there are internally disjoint
paths [noise] obviously, there will not be any cut vertex both are equivalent, then B and e
C they are equivalent. So, B says that for all [noise] x y [noise] there are internally
disjoint x y paths the two paths, and C says that for all x y there is a cycle so; that means,
if this particular internally disjoint paths are there through passing through x and y, they



will be forming a cycle through x and y. Hence B and C they are all [noise] equivalent

that we have already seen.

(Refer Slide Time: 18:29)

« Theorem 4.2.2 proves A<B

« For B<> C, note that cycles containing x and y correspond to pairs of internally
disjoint =, y-paths.
¥
« For D<> C, the condition &(G) = 1 implies that vertices x and y are not isolated;
we then apply the last part of D to edges incident to x and y. If there is only one

such edge, then we use it and any edge incident to a third vertex.

« To complete the proof, we assume that G satisfies the equivalent properties A
and C and then derive D. Since G is connected, &(G) = 1. Now consider two edges
uv and xy. Add to G the wvertices w with neighborhood {u, v} and z with
neighborhood {x, y}. Since G is 2-connected, the Expansion Lemma (Lemma
4.2.3) implies that the resulting graph G is 2-connected.

« Hence condition C holds in G’, so w and z lie on a cycle C in G’. Since w, z each
have degree 2, C must contain the paths u, w, v and x, z, v but not the edges uv
or xy. Replacing the paths u, w, v and x, z, v in C with the edges uv and xy yields
the desired cycle through uv and xy in G. L e

e

T — S o
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So, for equivalence from D to C let us assume that the condition little delta is greater

than or equal to 1, which will imply that the vertices x and y are not isolated, we then
apply the last part of D to the edges incident to x and vy, if there is only 1 such edge then
we use it and any edge incident to the third vertex to complete the proof we assume G
satisfies the equivalence properties A and C, and then derive this particular D. Since G is
connected little delta of G is greater than or equal to 1, now consider the 2 edges u v and
X y 2 edges. Let us consider [vocalized-noise] so at 2 G the vertex w with the
neighborhood of u v and z with the neighborhood of x y. Now since G is 2 connected by
using the expansion lemma which will imply that the resulting graph G prime is also to

connected.

Hence the condition C holds in G prime so w and z, they lie on a cycle and this cycle will
be like this. Since w and z have the degrees 2. So, C must contains the path u w v,
[vocalized-noise] and x z y and this will be added to the cycle C, but not the edges u
[vocalized-noise] u v and x y. So, replacing uu vu w v, and x z y in C with the edges

with the edges, u v and x y this will yield the desired cycle which is passing through u v



and x and y. So, hence we have proved that if these conditions are given, then there exist
cycle and hence from d v have proved the condition C which C says that there [noise] is

a cycle which goes through x and y for all [noise] x and y pairs.

Hence all four conditions are equivalent as they characterized 2 connected graphs; that
means, the 2 connected graph is a connected and has no cut vertex, a 2 connected graph
for all x y pair of vertices of that particular graph, there are internally disjoint x y path
into connected graphs [vocalized-noise] for every 2 connected graphs for all x y pair of
vertices, there is a cycle which will pass through due to pair of vertices, and also to
connected graph where little delta G is greater than or equal to 1, and every pair of edges
in G [noise] lies on a common cycle. So, all four conditions characterizes the 2

connected graphs, and there all four conditions are equivalent, and we have stated that.

(Refer Slide Time: 22:09)

k-Connected and k-Edge-Connected Graphs

e Def: Given x, y € V(G), a set S < V(G) — {x, y} is an x,y-separator
or x, y-cut if G—‘; has no x, y-path.

— S . i fé
e Letk(x, y) be the minimum size of an x, y-cut. 2 ‘-‘;ﬂi’f;“'f
e Let A (x, yv) be the maximum size of a set of pairwise
internally disjoint x, y-paths.

2im
e For X, Y < V(G), an X, Y-path is a path having first vertex in X,

last vertex ir_j/, and no other vertex in XU Y.

e An Xx,y-cut must contain an internal vertex of every
x,y-path, and no vertex can cut two internally disjoint x, y-paths.
Therefore, always k(x, v) = Alx,_y). X Y

e Thust Eﬂg_[t:nblem of finding the smallest cut and the largest set
Df[Paths are dual problems.
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Now, we will go ahead about 2 connected sorry k connected graphs, and k edge

connected graphs. So, we started with 2 connected graphs now we generalize the
connectivity up to k that is it can be more than 2 also. So, k connected graphs, and k edge
connected graphs. So, there are 2 different type of connectivity we are talking about

when we say k connected graph is a k vertex connected, and k edge connected graphs.



So, let us see the few definitions. So, given x y pair of voltages in the graph G, the set S
which is a subset of vertices minus X y is then X y separator or a x y cut if G minus S or
G without S has no x y path take this example. So, x and y they are set of vertices which
are there in G, they passes through a set of vertices called S, where S is without x y a
subset of vertices which can be there. Now this is called x y separator or x y cut, if we
remove [noise] x y so if we remove S from the graph. So, x and y will have no path to
connect x y. So, x y becomes disconnected if S will be not present in the graph hence this

is called the x y separator or x y cut.

[vocalized-noise] So, let kappa x y be the minimum size of this particular x y cut,
[vocalized-noise] and lambda x y be the maximum size of [noise] the set of pair wise
internally disjoint x y paths for x y a subset of vertex set of the graph G, and x y path is a
path having the first vertex in [noise] the vertex set x. and the last vertex is in y,
[vocalized-noise] and no other vertex in x union y exists, and X y cut must contain an
internal vertex of every x y path, and no vertex can cut 2 internally disjoint x y paths

therefore, always [noise] kappa x y [noise] is at least lambda of x y.

Again | am repeating. [vocalized-noise] So, far internally for two internally disjoint x y
path, if we take out an vertex from this path do not disconnect y because it has internally
disjoint path. Another vertex also [noise] if it is remove [vocalized-noise] together they
will disconnect the graph, hence if let us say the graph has lambda different [noise] x y
paths, then taking out vertex from each path will form [noise] the x y separator or x y cut
hence the minimum size of X y cut must be at least the maximum number of internally
disjoint paths between x and y, that is the problem of finding a smallest cut, and the
largest set of internally disjoint paths are the dual problems that we are going to

encounter here in k connected graphs.

(Refer Slide Time: 25:54)



Exampleas:as

e In the graph G below, the set S ={b, ¢, z, d} is an x, y-cut of
size 4; thus x(x. v) = 4. As shown on the left, G has four
pairwise internally disjoint x, wv-paths; thus Alx, v) = 4.
Since k(x, y) = Alx, y) always, we have k(x, y) = A(x, y) =4.

”EUQJ*LTS' B x d
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So, to illustrate through an example this particular concept of duality, [noise] we will see
this particular example here, the separator for x y cut, this is x, and this is y. [vocalized-
noise] We have to identify a separator, we will use a green ink for that separator vertices.
[vocalized-noise] Now this S comprises of b is plugged out from this internally disjoint
path, [noise] then C which is plugged out from this internally disjoint paths between x
and y, then z which is plugged out from this internally disjoint paths [noise] between x

and y, and d this plugged out from this internally disjoint path from x and y.

[vocalized-noise] So, four vertices which will form the separator [noise] or x y cut
[noise] is being picked up [noise] 1 from every vertex, hence the kappa that is minimum
of minimum size of X y [noise] cut is at most 4. [noise] Now we have also seen that these
particular four vertices separator of size 4, we have taken out from 4 different pair of
internally disjoint x y paths, 1 2 3 4 hence this particular lambda [noise] x y [noise]

which is the maximum x y disjoint paths [noise] is basically at least 4. [noise]

Since we know that from the previous discussion [noise] kappa x y is basically at least
lambda of x y, and kappa x y is basically 4, and lambda x y is at least [noise] four hence
by taking up these all inequalities, we can conclude that kappa of x y [noise] is equal to
lambda of x y, [noise] and that is equal to 4 [noise] in this particular example that is what

is the duality [noise] that is [noise] the minimum [noise] cut [noise] is equal to the



[noise] maximum number of [noise] internally disjoint paths between a pair of vertices x

and y. [vocalized-noise]

So, we are solving this local problem between the pair of vertex vertices which is x and y
what about other pair of vertices, the same [vocalized-noise] particular concept, we will

check and find out [vocalized-noise] this particular inequality for other pair of vertices.

(Refer Slide Time: 29:16)

Example continue

B

« Consider also the pair w, z. As shown on the right,
. . VY :

kiw, z) = AMw, z) =3, with {E. €, x} being a minimum w, z-cut.

The graph G is 3-connected; for every pair u, v € V(G), we can
find three pairwise internally disjoint u, v-paths.

= From the equality for internally disjoint paths, we will obtain an
analogous equality for edge-disjoint paths. Although k(w, z)=3
above, it takes four edges to break all w, z-paths, and there are
four pairwise edge-disjoint w, z-paths.
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Now, we will consider another pair that is now the pair is w and z. So, the kappa w z
[vocalized-noise] so kappa means this is ones vertex this is another vertex, this is another
vertex. So, three vertices if we plug out this will disconnect w and z, hence kappa is
equal to the to the lambda w z lambda means each vertex is taken from each vertex is
taken from internally disjoint paths, [noise] w and sorry w and z [noise] this is one path,
then this is one path, w and z w and z this is another path. So, let us again see that.

[noise]

So, this is w and this is z [noise] let us see whether it has internally disjoint paths are not.
[noise] So, between w and z this is one path, and this particular vertex we have included
in the separator [vocalized-noise] between w and z there will be another path, and this
particular vertex x we have included in the separator [vocalized-noise] between w and z

there is another path which is going y of y and b is another included in the separator.



[vocalized-noise] So, if you remove them from the graph [noise] this is w z separator cut,
[noise] if we remove it then w and z will be disconnected, [noise] hence the minimum
size of w z here is 3, [noise] and the and the graph G is basically having for every pair of

vertices, there are 3 internally disjoint u v paths.

We have seen we can [vocalized-noise] obtain analogous equality for edge disjoint paths
also, and [noise] there we can see that although the kappa w z is equal to 3, [noise] it will
take four edges to break all w z paths, [noise] and there are four pair wise edge disjoint w
z paths. [noise] So, although there are 3 kappa value is 3, but when we talk about the

edge disjoint it requires 4 let us see [noise] where are those 4. [noise]

So, this is w z [noise] if you want to disconnect through the edges so; that means, if we
plug this, [noise] 1 2 3 4 then w and z will be disconnected, [noise] and the size 1 2 3 4,
hence [vocalized-noise] it takes 4 particular edges to break w z paths, [noise] and there
are four pair wise edge disjoint w z paths. [noise] So, this is one w z path, this is another
w z path, this is another w z path, and this particular edge if we take. So, edge disjoint w

z path we have also obtained.
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Theorem (Menger [1927]) s.2.17

J
If x, v are vertices of a graph G and xy & E(G), then the
minimum size of an x, y-cut equals the maximum number
of pairwise internally disjoint x, y-paths. 4

(ocal) or- 1

Proof: An x, y-cut must contain an internal vertex from
each path in a set of pairwise internally disjoint x, y-paths.

These vertices must be distinct, so k(x, v) = A(x, v). v e
1Lﬁﬂpﬁfg,j
s TO prove equality, we  use induction on n(G)

Basis step: n(G) = 2. HerE Xy & E{G} yields k(x, y) = Alx, y)= D -
f- Induction step: n(G) = 2 Let k="ko {x y). We construct k EENWISE
mternallx_.r disjoint x, y-paths. Note that since N(x) “and N(y) are
X, - (‘L;II,IS no minimum cut properly contains N]xi or Niy).
Vet » e (YL F
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[vocalized-noise] now with this local phenomena between x and y vertices, now we see
that the Menger theorem which is given in 1927, if x y are the vertices of the graph G,
and x y is not having an edge in G, then the minimum size of x y cut equals [noise] the
maximum number of pair wise internally disjoint x y paths. [vocalized-noise] So, this is
the local [noise] theorem that is we this particular Menger theorem is now being stated
between [noise] a particular pair of x y vertices, but for the entire graph for every pair of
vertices, [noise] this has to be satisfied and only this particular condition for Menger

theorem, [noise] in globally applicable for a graph that we will see at the end.

So, let us see the proof of ah this Menger theorem [vocalized-noise] for the proof let us
assume an X y cut, and this particular x y cut must contain the internal vertices from each
path in the set of pair wise internally disjoint x y paths that, we have already seen these

vertices must be distinct. So, this inequality we have already have also seen that kappa x



y is at least lambda x y by because, [vocalized-noise] each vertex is picked out from
internally disjoint path which is lambda x y number of such paths are there. So, hence the
minimum size of the cut is at least equal to the number of internally disjoint x y paths

that is lambda value.

Now, to prove the equality so to prove the equality; that means, we have to we have to
prove that lambda x y is also at least kappa x y. So, we have to basically show that there
are lambda x y paths are there so, to prove the equality we use the induction on the
number of nodes on in the graph, let us assume that the number of nodes is equal to 2,
and also the condition of the theorem says that x and y should not have an a direct edge.
So if there are only 2 nodes, and there is no edge what will happen, then the connectivity
between x and y is the 0 and there are no internally disjoint paths, hence the basic step is
proved. Now let us go to the induction in step when the number of nodes is greater than

2.

Now, here let us assume a value k which is nothing, but the size of x y cut in the graph
G. And now we construct k different pair wise internally disjoint x y paths to show that
lambda is at least kappa x y, and kappa x y is equal to k. So, k different internally disjoint
x y path we have to construct, and hence to prove this particular theorem [vocalized-
noise] note that since neighbor of x this is X. So so this is the neighborhood of x and if
this is y so, they are exists a neighborhood of point since neighborhood of x, and
neighborhood of 1 are x y cuts; that means, if we remove they remove all the vertices
which are there in the neighborhood of x it will disconnect x and y. Similarly if we

remove all the vertices of the neighborhood of y and also x and y will be disconnected.

[vocalized-noise] also no minimum cut, but we are looking for a minimum cut that is
kappa x y, no minimum cut properly contains N x that is the neighbor of x and neighbor

of y that we know means.
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Case 1: G has a minimum X, y-cut S other than N(x) or N(y)

e To obtain the k desired paths, we combineg x, 5-paths and 5. y-paths
obtained from the induction hypothesis (as formed by solid edges
shown below). Let V1 be the set of vertices on x, S-paths, and Inti-’_.‘-._hu
the set of vertices on S, y-paths. We claim that § = V1 M V2. Since S is a
minimal x, y-cut, every vertex of S lies on an _x, y-path, and hence

= = Vi M M2 If v € (V1 — V2) — S, then following the x, v-portion of
some X, S-path and then the v, y-portion of some 5, y-path vields an
¥, y-path that avoids the %, yv-cut 5. This is impossible, so 5= V1 /™ V2.

By the same argument, V1 omits N(y)-5S and V2 omits N(x)-5.

)
#g#: e
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x

Case 1
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We have to form ah minimum cut. So, case 1 we have to see when G has a minimum x y
cut S other than the neighborhood N x neighborhood of x or neighborhood of y. So, to
obtain the k desired path we combine x S paths and S y path. So, S is you know that a
separator or X y cut. So, we combine x S path and x y paths obtained from the induction
hypothesis. So, that we can see so, this is x this is S all the vertices, [noise] and now we
we form x S paths. Similarly for y [noise] and S is edges will form y S paths this is x S
[noise] paths shown by red lines, [noise] this is y S [noise] paths shown again here on the

right side. So, by induction hypothesis we have obtained these particular desired paths.

Now, let V 1 be the set of vertices on x, on on x S paths let us see that these set of
vertices will be the V 1 and V 2 be the vertices on S y paths. Now we claim that S that
separator is equal to V 1 intersection V 2 since S is the minimal x y cut. So, every vertex
of S lies on x y path, [vocalized-noise] and hence S is a subset of V 1 intersection V 2
[vocalized-noise] my V is an element of V 1 intersection V 2 minus S, then following the
x v portion of some x S path, and then v y [noise] portion of some S y path yield, the x y
path that avoids x y cut S this is impossible.
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Casel continue

« Form Hi, by adding to G[V1] a vertex y* with edges from S. From Hz
by adding to G[UEI/:: vertex x° with edges to 5. Every %, y-path in G
starts with an x, S-path (contained in H1), so every x, y -cut in H1 is
anx, y-cut in G. Therefore, kni(x., v')=k, and similarly kuz(x’ v)=k.

e Since Vi omits N(y)-S and V2 omits N(x)-5, both Hi1 and Hz are
smaller than G. Hence the induction hypothesis vields Ani(x, v')=k=
Anz(x’, v). Since V1 — V2=5, deleting v’ from the k paths in H1 and x’
from the k paths in Hz yields the desired x, S-paths and S, y-paths in
G that combine to form k pairwise internally disjoint x, y-paths in G.

Wk =

\ - Iy
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Case 1
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So, S is equal to V 1 intersection V 2 by the same argument V 1 omits N y neighbor of y
minus S and V 2 omits neighbor of x minus S. So, from H 1 by adding to the graph
which is induced by V 1 a vertex y prime with the edges from S from H 2 here, this is S
2 so, from H 2 by adding the vertices to to the induced sub graph of V 2 a vertex x prime
that we will see in the next slide with the edges to S, every xy path in G which is starts
from within x as path contained in H 1. So, every x [noise] y prime cutin H 1 isan x y

cut in G therefore, kappa of x [noise] y prime is equal to k.

Similarly, kappa of H 2 is x prime and y [noise] that is equal to the k. [noise] Since V 1
omits neighbor of y minus S, and V 2 omits neighbor of x minus S both H 1 and S 2 are
smaller than G hence the induction hypothesis yields that lambda H 1 x comma y prime

is equal to the k is equal to the lambda H 2 x prime y.

Hence since V 1 intersection V 2 is equal to S. So, deleting y prime from k paths in H 1
and x prime from k path in edge to yields the desired x S paths, and S y paths in G that

combine to form k pairwise internally disjoint x y path in G.
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Case 2: Every minimum X, y-cut is N(x) or N(y)

« Again we construct the k desired paths. In this case, every vertex outside {x} U
M(x) U MN(y) U {y} is in no minimum x, y-cut. If G has such a vertex v, then
ko vix, v)=k, and applying the induction hypothesis to G-v yields the desired
X, y-paths in G. Also, if there exists u e N(x) N(y). then u appears in every
x, y=-cut, and xG-u(x, v)=k-1. Now applying the induction hypothesis to G-u
vields k-1 paths to combine with the path x, u, y.

s We may thus assume that N(x) and N(y) partitions V(G) - {x. v}. Let G’ be the
bipartite graph with bipartition N(x), N(y) and edge set [N(x), N(y)]. Every
¥, y-path in G uses some edge from MN(x) to MN(y), so the x, y-cuts in G are
precisely the wvertex cowvers of G Hence B(G')=k. By the Konig-Egervary
Thearem, G’ has a matching of size k. These k edges vield k pairwise internally
disjoint x, y-paths of length 3.
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Now, case 2 is also very similar case to says that every minimum X y cut is either the

neighbor x N x or N y. So, the same thing also is applicable in this particular case, hence
we have constructed pairwise internally disjoint paths that is of size lambda [noise]

hence it proves the theorem.
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Definition: Line Graph s:as

s The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with ef € E(L(G)) when
ey and f /w)in G. Substituting “digraph” for “graph” in
this sentence vields the definition of line digraph.
For graphs, e and f share a vertex; for digraphs, the head

of e must be the tail of f.

. Example:f L (6D

L(H)
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Now, we will see a definition why because [noise] this vertex version of Menger theorem
we have seen now, we have to prove the edge version of the Mengers theorem for that
we have to see this particular special kind of graph which is called the line graph, we are
using the line graph for it. [vocalized-noise] So, a line graph of the graph G is [noise]

denoted by L G is a graph whose vertices are the edges of G.

So, again let us see the definition line graph of G is written as L G, which is also a graph
whose vertices are the edges of the original graph G, and the edges of line graph is ef,
when e is basically an edge u v in original graph and f is again an edge v w in the graph;
that means, these 2 edges are touching at v then it will form an edge in the line graph let

us take this particular example. [vocalized-noise]

Let us see that this is a graph you want to construct a line graph of this particular graph
according to this particular definition. [vocalized-noise] So, line graph is a is a graph
whose vertices are the edges of G. So, this particular edge is E. So, this becomes a vertex
this is f. So, let us see that this is an edge so it becomes a vertex called E, this is another
edge in a graph so, here it will become a vertex, and here this is the H edge called H. So,
this also will become a vertex, and G will also becomes a vertex of a graph. So, there are
four vertices, because 1 2 3 4 different edges are there, in the line graph 4 different

vertices will be there. [vocalized-noise]

Now, edges of this line graph e f when an edge 2 edges of the main graph the joints, they
will form an edge e f in the main graph. So, e f these this edge and this edge will join at
this end so it will form an edge e f. Similarly f and H they are joining in the vertex. So, f
h will be an edge, similarly g h will be an edge then e g will be an edge also f and g they

are touching so, fand g also will be edge.

So, this will be a line graph of the graph G, the line graph of a graph is the graph whose
where is the vertices of a line graph or the edges of the original graph, and the edges of
the line graph is when the edges of the original graph are meeting then it will form an
edge in the line graph. So, if I will graph is given we can construct the line graph of a

graph now let us see the theorem.
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Theorem szis

e If x and y are distinct vertices of a graph or digraph G, then the

minimum size of an x, vy-disconnecting set of edges equals the
maximum number of pairwise edge-disjoint x, v-path&: J

Proof: Modify G o obtain G’ by adding two new vertices s,t and two new
edges sx and yt. This does not change x'(x. v) or X{xvy) . ._fer we can think
of each path as starting from the edge sx and ending with the edge vyt.
A set of edges disconnects vy from x in G if and only if the corresponding
vertices of L(G") form an sx, yt-cut, Similarly, edge-disjoint x,y-paths in G
become internally disjoint sx.yt-paths in L{(G"), and vice wversa, Since
®x 2 vy, we have no edge from sx to yt in L{G’). Applying theorem 4.2.17 to
L(G’) yvields x's{x, y)= KLie1(sx, yt)= Auei(sx, yt)= A'G(x, y) i

il w o o o r

L L L-"I‘) ] € =
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So, if x and y are distinct vertices of a graph or a [noise] graph G, then the minimum size
of x y this connecting set of the edges here, we are we have changed the terminology
here we are calling it as disconnecting set of edges, [vocalized-noise] in the previous
theorem we have seen the separating set of vertices. [vocalized-noise] So, the minimum
size of an x y disconnecting set of edges equal to the maximum number of pair wise edge
disjoint x y paths, they are we were talking about vertex disjoint paths. Hence this is the
edge version of the Menger theorem, [noise] this is a local local means for x y only we

are considering one pair of vertices.

Let us see the proof we are given a graph G we will modify to d prime by adding 2 more
new vertices s and t [noise] this s and t, they are rated up, and two new edges s x and y t
they are added. So, this is called a G prime. So, this G prime does not change kappa
prime and lambda prime. So, this is kappa prime, and this is lambda prime. So, this is not
going to change in the original graph, and we can think of each path as starting from this

particular edge s x, and ending with this particular edge y t.

So, a set of edges disconnects y from x in G if and only if the corresponding vertices in L
G prime, we have to obtain a line graph of G prime. So, if the set of edges which
disconnects y from x in G this corresponds to or this is equivalent to saying that a the
vertices of L G that is the line graph form an s x and y t cut. Similarly the edge disjoint x
y paths in G becomes internally disjoint s x and y t paths in L G prime.



So, edge disjoint here in this particular graph will become vertex disjoint in the line
graph and vice versa. So, having done this, now we will apply the previous theorem that
is the vertex version of Menger theorem 4.2.17 to this line graph L G prime, and this will
yield as kappa prime. [vocalized-noise] So, this particular on the line graph if we apply
this particular kappa prime kappa L G prime, s x and y t minimum cut is equal to lambda

of L G prime s x and y t, this is the internally disjoint pairs between s x and y t.

[vocalized-noise] And we know that this particular kappa of L G prime this is equal to
the kappa prime of the graph G. So, kappa prime that is equal to kappa prime x vy,
[vocalized-noise] similarly lambda L G prime is equal to the lambda prime in the graph
G. So, the line graph will convert it to the line graph of the graph will convert the
problem. So, that the vertex version can be applied and that is equivalent to the edge

version solution.
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Lemma: Deletion of an edge reduces connectivity by

atmost 1. 4.2.20

e Proof: Since every separating set of G is a separating set of
G-xy, we have k(G-xyv) < k¥(G). Equality holds unless G — xy
has a separating set S that has size less than k(G) and hence
is not a separating set of G. Since G-S is connected, G-xy-S
has two components G[X] and G[Y], with x € X and y € Y.
In G-5, the only edge joining X and Y is xy.

e If |X] = 2, then S U {x} is a separating set of G, and
kK(G) = k(G-xy)+1. If |Y]| = 2, then again the inequality holds.
In the remaining case, |S| = n(G)-2. Since we have assumed
that |S| < k(G), |S| = n(G)-2 implies that x(G) = n(G)-1,
which holds only for a complete graph, Thus k(G-xy)=
n(G)-2= k(G)-1, as desired.
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[vocalized-noise] So, division of n H will reduce the connectivity by at most 1. So, let us
use this particular lemma in the next theorem, and this is the global version of the
theorem. So, the theorem says that the connectivity of G equals the maximum k such that
lambda x y is at least k for all x y [noise] pair of vertices. So, the edge connectivity of G

equals the maximum k such that lambda prime x y is at least k for all x y set of pairs.
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e In this Ilecture we have discussed the
k-connected graphs, k-edge-connected graphs,
Menger’'s theorem and Line graph.
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So, conclusion in this lecture we have discussed the k connected graphs, k edge

connected graphs Menger theorem and line graph.

Thank you. [noise]



