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Welcome to the 37 lecture. Today, we are going to talk about complexity theory or more 

specifically will give a brief introduction into what complexity theory is. So, for the rest 

of this course we will keep our focus only to the set of decidable languages. So far we 

have seen several class of languages; and the past few lectures we have been our focus 

was mostly on the set of undecidable languages, we saw various undecidable problems. 

And last lecture, we saw a mechanism which we can use to show that languages are 

undecidable. But from now on we only focus on the set of decidable problems, and we 

will give a finer gradation, we will give a finer classification of this set of decidable 

languages. 
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So as I said that we will focus on the class of decidable languages. So, therefore, from 

now on we will assume that all our Turing machines are halting Turing machines, of 

course, unless otherwise specified; if I specify something else then of course, we will 

assume otherwise, but by default we will assume all the Turing machines are halting 

Turing machines. So, what do we study in complexity theory, what are the kind of 



questions that we want to address. So, first what we will do is that within the class of 

decidable problems, we will classify them based on the amount of resources that a 

particular language uses or a particular Turing machine of a language uses to rejects 

answers. So, resources can be many things, so resources can be time, they can be space. 

So if you are looking at let say time is a resource, and then we will try to see how much 

time it takes for a Turing machine to come up with its answer. And depending on the 

amount of time, we will classify languages in to different classes. So, the class of 

language which takes more time should be in one class, class of languages which take 

lesser time should be in other class and so on. Similarly, for resource like space also we 

give a space based on the amount of cells that the Turing machine uses to come up with 

its answer. So, this gives us classes, and then we will try and then we will study relation 

between these classes, so that is the goal of complexity theory that how are these classes 

connected to each other. Whether we can show the classes are the same, whether we can 

separate the classes, what kind of separation of are known and so on, these are the kind 

of questions that we try to addressing complexity theory. So, first we need to define what 

we mean by running time and space used by a Turing machine. 
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So let us look at a few definitions. So, let M be a deterministic Turing machine. The 

running time of M is said to be T, which is a function from natural numbers to natural 

numbers, if for all x in sigma star. So, if all x is in sigma star, M halts in at most order T 



of mode x number of steps. So, we say that the running time of a Turing machine in 

some function T, if for every x the machine halts in at most order T of mode x steps. So, 

there are several important points in these definitions. First is that we always compute 

the running time as a function of the length of the input. And not only for running time, 

even when we look at other resources such as space, the amount of resource that is used 

by a Turing machine is always a function of the length of the input. So if x is my input, it 

is a function of the length. 

Next is that here we talk about the running time, we say that the running time is T if 

input on x, the machine M halts in at most this many number of steps. So, it can halt in 

much few number of steps also, but it should not take more than this many number of 

steps. And the third point is the use of the order notation. So, remember that by use of 

order notation, we are actually ignoring multiplication by constants and lower order 

terms. For example, if t is let say the function N square, it maps N to N square then we 

say that the machine as running time N square if for every x the machine halts in at most 

order N square number of steps. So, it can take for example, N square plus N or 100 N 

square minus 2 N plus 3 or any such thing which belongs to the class order N square. 

So, similarly we define the space required. The space required by M is said to be the 

function s going from N to in if for all x in sigma star M uses at most order s of mod x 

cells in its work tape. So, one additional point that is important here is that when we are 

looking at space complexity. It is important that we keep in mind the model that we 

defined or we discussed last time, so we have Turing machine not last time we talked 

about reduction. So we have a Turing machine which as three tapes - input tape, work 

tape and output tape. So, when we talk about space complexity of a machine, we do not 

consider the space used in the input tape, and the output tape. They can be anything that 

is any arbitrary amount. We only look at the space used in the work tape of the Turing 

machine, the amount of cells used in the work tape. So remarks, so let me quickly 

mention what I said. So, we assume the three tapes model of a Turing machine, and 

count the space used in the work tape only; second is we always count the amount of 

resource used as a function of the input length. So this is very important. 
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Since, we use the big O notation. We ignore multiplicative constants and lower order 

terms. So, now that we have defined time and space complex or we have defined what 

we mean by running time of a machine and the space used by a machine, we can define 

the time and space complexity classes. So, let t is a function from natural numbers to 

natural numbers. So, this is the time function that we will have. We define the class d 

time t or we will just call it as time t, time t of n has the class of languages L such that 

there exists a deterministic Turing machine M having running time t of n such that L 

equals L of M. So, time T of N consists of all languages, for which, there is some Turing 

machine that have running time t of n and it accepts the language L. So, basically all 

languages for which we have some algorithm or some program which runs in that many 

number of steps so that is the idea. 
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Similarly, for space also we define space t of n as the class of languages L such that there 

exists a deterministic Turing machine M requiring, so for space, let me use just for more 

clarity let me use the function small s of n. Once again s is a function from natural 

numbers to natural numbers so requiring s of n space such that L equals L of M. So all 

those languages for which there is a Turing machine that takes order I mean that uses at 

most order s of n number of cells that runs in space s of m. So, this is how we define the 

class time t n in the class space s of n. So, in text you will also find them defined as d 

time and the class d space, but essentially they are the same. 

So, now, we can also define all this is for deterministic Turing machine. So, we can also 

look at time and space of nondeterministic Turing machines. So, in the case of 

nondeterministic Turing machines, we just have to make a call so how does a non 

deterministic Turing behave Turing machine behaves.  

So, recall that in a nondeterministic Turing machine the Turing machine can non-

deterministically branch of at every step. So, at every step during its computation, it can 

non-deterministically decide to do may be one of two different things. So, therefore, it 

will have more than one computation paths that will lead to a accept or a reject state. And 

therefore, when we talk about running time and the space required, we have to be little 

careful. So, the way we defined the running time of a nondeterministic Turing machine is 



we look at the maximum time that is required over all the computation paths. So, 

whatever is the maximum running time over all computation paths? 
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So, let me just define here. So, let N be a nondeterministic Turing machine. The running 

time of N is said to be a function t from N to N, if for all x belonging into sigma star. 

Every computation path in N halts in at most order T of x steps. 
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Similarly, when we talk about the space we look at the maximum space that is used over 

the all computation paths. So, the space required by N is said to be a function s from 



natural numbers to natural numbers such that N uses or such that every computation path 

of N uses at most O s of mod x cells on its work tape. 
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Analogously, we will have the time and space classes also for nondeterministic 

machines. So, we define the class N time t of n as the class of languages L such that there 

exists a NDTM - nondeterministic Turing machine, N having running time t of n such 

that L equals L of N. Similarly, N SPACE s of n is defined as the class of all language is 

L such that there exists a nondeterministic Turing machine N using s of n space such that 

L is equal to L of N. So, this is how we defined deterministic time and space classes as 

well as non-deterministic time and space classes. So, now let us look at some specific 

deterministic and non-deterministic classes. In fact, we will define the popularly known 

classes P and NP. 
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So, the classes P and N P. So, P is defined as the union over all k greater than or equal to 

let say 0 of time n raise to the power k. So, look at all problems that have a running time 

either n to the power 0, which is constant or n or n square or n cube or n to the power 4 

and so on. And the class of all these problems is basically P, so all problems which have 

a running time that is polynomial. So, if I say that a language belongs to P that means, it 

belongs to N to the power k for some k, so it has for some constant k. So, similarly the 

class NP of N TIME n raise to the power k. 
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So, P is widely recognized as the class of problems having an efficient solution or 

algorithm. So, I mean it is widely recognized that if we have a problem that is in P, it 

means that we can actually compute a solution to this problem in an efficient manner. For 

example, if we have a computer we can actually write down an algorithm or a code for 

this problem that will produce an answer in a reasonable amount of time quite quickly. 

On the other hand, NP is said to be the class of problems, whose solutions can be verified 

efficiently. 

So, actually in our next lecture, we will give an alternate definition of NP which will 

make this idea more clear. But I just want to give a perspective of what we mean here so 

there are certain problems for which we can actually solve the problem in an efficient 

manner in some polynomial number of steps. Such as matrix multiplication or give an 

graph I want to find out whether I can go from one vertex to another or given an array let 

say I want to find out the minimum element in the array and so on. So, these are the 

problems that for which we say there is an efficient solution these are the problems 

which are in P there are some other problems for which it might be difficult to come up 

with the solution. So, we do not know how complex I mean whatever knowledge that we 

have it does not seem lightly that a solution can be computed efficiently, but if somebody 

gives us a solution we can verify it efficiently. 

For example, think of the games Sudoku. So, in a game of Sudoku, if somebody asks you 

to solve Sudoku, it is more challenging than if somebody than gives you solve board of 

Sudoku and asks you to check whether it is a correct solution or not. So, if somebody 

fills out the boxes and then asks you whether this is a correct solution or incorrect 

solution, you can very easily sum up and check whether the solution is correct or not that 

is very efficient, but if you have to come up with up your own solution that is more 

difficult. So, there are other such problems for which coming up with a solution is I mean 

considerably more difficult then verifying whether a solution is correct, so that is the in 

some sense that is the difference between P and the class NP. 

So, next time, we will look at more about these classes, we will look at more examples of 

problems that are in P and N P. And we will also look at alternate definition of the class 

NP which is more in line with this fact which I just mentioned that NP is the class of 

problems whose solutions can be verified in an efficient manner. I will stop here today. 



Thank you. 


