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Welcome to the 16th lecture of this course. Today, we will start by giving the formal 

definition of a Context Free Grammar and how we formally define acceptance by a 

context free grammar then we look at some more examples. And finally, we will 

conclude by showing that the set of regular languages form a subset of the class of 

languages accepted by context free grammars. 
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So, definitions and notations; so in short CFG is a 4 tuple, write it here is a 4 tuple V, 

sigma, P, S, where V is a non empty set of variables; sigma is the set of terminals. So, 

you just underline. So, these are the formal terminologies. So, we have variable, we have 

terminal.  

P is a subset of the relation V cross V union sigma star is the set of production rules often 

these are just called a rules instead of saying the whole thing production rules. And S 

belonging to V is the start period. So, both these sets V and sigma are finite sets we only 

look at finite sets. V is non-empty, because it must contain the start variable at least is has 

one variable which is the start variable. Sigma is the set of terminals. 



As I said last time, that we usually denote the variables with capital letters and the 

terminals with either small letters or a numeric symbols. Now this is slightly important. 

So, we have the production rules. So, we denote the production rules as a subset of the 

relations from V to V union sigma star. So, we do not write it as functions from V to V 

union sigma star.  

The reason for this is note that we can have multiple production rules corresponding to 

one variable. So, for A variable we can I mean even has 0 production rules or we can 

have one or more than one production rules. So, to accommodate for that fact, we have 

this as a relation instead of A functions it is a relation from V cross V union sigma star. 

So, one variable gets map to a string from which consists of symbols from V and sigma 

and the start variable is of course, there. 

Let A going to w be a production rule, and let u and v be strings in, so I will just write it 

in A short hand notation. So, u and v are strings over V union. So, once again I should 

not write this is a set this is so V union sigma itself is a set. So, I will just write it with 

round bracket. So, A to w is a production rule and we have u and v which are strings over 

variables and terminal symbols. Then we say that the string u v yields u w v in one-step. 

Essentially, what this means is that if I have a variable in some string, let say u A v 

replacing that variable with one of its production rules gives me a certain string, so that is 

what means to say that some string yields some other string in one-step. 
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Now we can generalize this definition. So, for u v in V union sigma star, we say that u 

yields v, if either they are the same strings or there exist a sequence of strings u 0, u, 1 u 

2 and so on till u k. And u 0 equals u, u k equals v; and u i yields or u i minus 1 yields u i 

in one-step. So, essentially this is generalizing this two multiple steps. So, we say that a 

string u yields a string v, if basically I can go from u to v in 0 or more steps. So, if u and 

v are the same then it means going in 0 steps. Otherwise, I can just have A sequence of 

strings u 0 equal to u, u k equal to v - which are not the same. And I go from u 0 to u 1 in 

one-step, u 1 to u 2 in one-step, u 2 to u 3 and so on till u k each in one-step. 
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So, here we denote this as so this is denoted as u A V with a double arrow going to u w v. 

So, we have yield in one-step, it is in indicated with the double arrow. 
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And when we have yield in multiple steps, so this is denoted as u with A star on top with 

A star over here going to v. So, this means that from u, I can go to v in 0 or more steps. 

Now that we have a grammar; let me do one thing, let me just go to the definition of this 

grammar and give this a name.  
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Let us call this grammar G. So, we have this grammar V, sigma, P, S. 
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We define the language of G as so it is denoted as L of G. And it is the set of all strings w 

in sigma star consisting only of terminals such that S yields w. So, all those strings over 

terminals that we can generate starting from the start symbol. And finally, a language L is 

said to be a context free language if there exist a, so this is in short denoted as CFL. So, 

language L is said to be a context free language, if there exist a context free grammar G 

such that L equals L of G. So, all those languages for which we have a context free 

grammar are known as context free languages. 
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Let us look at some examples. So, the first example that we will see today is let us look 

at the language L which has a sequence of a(s) and followed by a sequence of b(s) such 

that n is greater than or equal to 0, and m is greater than or equal to n, but less than or 

equal to 2 n. So, the number of b(s) is at most twice the number of a(s), but more than the 

number of a(s), so it lies between n, and 2 to the power n. How do we create A language 

for this or how do we create a grammar for this language? 

So, what is the intuition? So, essentially we want to have, we want to form sequence of 

a(s), and sequence of b(s), so we will use the start variable, and we will have some 

variable to form sequence of a(s) and b(s). But when we are forming our sequence of 

b(s), we will use the fact that from one variable, I can have multiple production rules to 

add either a single b or 2 b(s) for every a, that I add. 

Let us try to see what we mean. Let us say we have a production rule going from A to A 

S B. So, this capital A will get replaced by a small a this means that I have equal number 

of capital A(s) and equal number of capital B(s), or it can go to epsilon as well. And let 

say that capital A goes to small a. Now where do I send capital B to, so if I send capital B 

to let say small bb, what I get is for every a, I have two b(s). Which means if I have n 

number of a(s) I will get 2 n number of b(s).  

Instead of 2 b(s), if I just keep a single b, then what I get is for every a, I have a single b. 

So, if I have n number of a(s), I will get n number of b(s) only, but what I want is 

something in between n and 2 to the power as 2 n. So, what I will do is I will have add 2 

rules b and bb. So, whenever if I have any number between n and 2 n, I will use the 

second production rule to add twice the number of b(s), and then when the number of 

a(s) becomes equal to the number of b(s), I will use the first production. 

So, this ensures as the number of b(s) cannot be less than the number of a(s), and it 

cannot be more than twice the number of a(s). So, this is I mean a very important 

example where we use the fact that I can have multiple production rules for one variable 

to accept languages which have this kind of a form. So, of course, this is our start 

variable and small a and small b are the terminals and capital A, B and S are the 

variables. 



(Refer Slide Time: 18:04) 

 

Now, let us look at another example. So, this is an example of a non-regular language 

that we had proven earlier. So, we take let us call this L. Let us call this one L 1. So, we 

will call this L 2; L 2 consists of strings over 0 1 such that w has or number of 0s in w is 

equal to the number of 1s in w. So, it has equal number of 0s and 1s. So, before 

proceeding to create a grammar for this language, let us try to understand the intuition. 

So, when I have when I look at a string which has an equal number of 0s and 1s, firstly, I 

can break up this string I mean firstly, I can divide this into two cases, either the string 

starts with the 0 or the strings start with the 1. In either case, suppose the string starts 

with the 0; if the string starts with a 0, then this starting 0 is matched by someone 

somewhere down in the string. 

For example, let say that I have a string w which starts with the 0, then because this 

string has equal number of 0s and 1s, I have this 0 then maybe I have some other string 

in between, and there is a 1 which gets match to it. By matched I mean that this inner 

portion again has equal number of 0s and 1s, and then again there can be something after 

this also may be there is a string after this. So, when I can have some string, but the 

property is that so both for both these pieces this one as well as this one, so both these 

parts have an equal number of 0s and 1s. 

So, this is the case when the strings start with the 0; even if the strings start with the 1, I 

have a similar sort of analysis. Now I want to use this fact to construct a context free 



grammar. So, I take my start variable and I replace S with 0 followed by S 1 S. So, this 

means that I have 0 and 1 which are matching each other. So, this 1 is basically matching 

the first 0; and between them I can have any string, so basically S can get replaced with 

again some other string which is generating a an equal number of 0s and 1s.  

And again, after the 1, I can have a string which is which has an equal number of 0s and 

1s which S is generating. So, I have this I also have the case when the strings starts with 

a 1. So, I will have 1 S 0 S. And I have the empty string epsilon, because by definition 

this string does not have any 0 or 1 which means that it has 0 number of 0s and 0 number 

of 1s which are equal. So, this is essentially the grammar. So, this grammar has only one 

variable S; it has two terminals and it has three production rules. 
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Now we will see our third example, which is kind of similar. So, this is known as the 

language of balanced parenthesis. So, basically balanced parenthesis means is so 

balanced parenthesis is a string over, so it has two symbols, the left parenthesis and the 

right parenthesis.  

So, it has two symbols. Such that they are balanced and well matched; I mean it should 

not be that, so balance means that I should have equal number of left and right; and well 

matched means that I should have a left before I have its corresponding right; it should 

have these thing. For example, so this is example of a balance parenthesis. So, this one 

gets matched with this one, this one gets matched with this one, and this one gets 



matched with this one. Similarly, I can have something like, so this one gets matched 

with this, this one gets matched with this, and this one gets matched with this.  

On the other hand, if I have something like let say this so if you look at this, this has 

equal number of left and right. So, the number of left is two number of right is also two, 

but this is not balanced, because I do not have a left parenthesis before my right 

parenthesis. So, this one gets matched with this one that is fine, but now I have a right 

before a left. So, this is not balanced. Similarly, if I have something like of course, this is 

also not balanced, because I have two left and only one right. 
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So, formally the language is let us call it L 3 is the set of all strings over these parenthesis 

such that w is balanced. So, how do I write a grammar for this? Firstly, I should have that 

for every left I should have a right and the string in between is again balanced. So, 

basically a left gets matched with the right and it can be next another balanced 

parenthesis inside it which is a smaller length, or it can be of the following form. So, I 

have some balanced parenthesis on the left, and I have some on the right. So, if you look 

at this example, so here basically how do I generate the first string? 

So, if I want to generate the first string, so let us see this example. So, first I will replace 

S with and S S, because I want to have this part and this part. Now I replace the first S 

with left S right and I have the second right say second S then I replace again the first S 

with left left S, right right. Now I replace the first S with epsilon. So, I need to add 



epsilon as well. So, I get left left, right right S, then I replace the the only S with again 

left S right, and now I replace this with epsilon. So, I get left left, right right, left right ok. 

And you can show that any other balanced parenthesis can also be obtained from this 

grammar. So, this is the grammar. 
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Now I will end by showing that regular languages are also context free. Let L be a 

regular language, which means that there is a DFA D, which is Q, sigma, delta, q naught, 

F that such that L is equal to L of D. So, from this DFA, I will construct A grammar 

construct a CFG whose variables are, so let call it V equal to R 0 for every or let call it R 

i for every q i belonging to Q. So, for every state q i, I have a variable R i the terminals 

are the same as the terminals or the alphabet of D. So, it is a same set. 

The production rules I define as follows. If delta q i a equals q j then add the rule R i 

going to a R j. And if q i is a accept state, and then add the rule q i going to epsilon as 

well, and the start variable is the variable corresponding to the start state which is R 0. 

So, this context free grammar accepts the same language as this DFA, which shows that 

regular languages are substring. I will not again go into the proof of why this accept it 

correctly, but I will just stop with the construction. 

Thank you. 


