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More Closure Properties of Regular Languages 
 

Welcome everybody, this is the 11th lecture. So, today we will discuss some More 

Closure Properties of Regular Languages. 
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The first property that we are going to see is a complement of a language. So, 

complement is always defined with respect to a universe, let say we are looking at 

languages over an alphabet sigma. So, sigma star is a set of all strings. So, we define 

complement of L. This is denoted by L with a bar on top is the set of all strings in sigma 

star minus L all strings that are there in sigma star, but not in L. So, the question is when 

we ask whether the complement operation is closed for regular languages, whether 

regular languages are closed under the complement operation is that if L is regular, is L 

bar also regular, or is the complement of L also regular. So, the answer is yes. 
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So, if L is regular, then L bar is also regular. So, this is the first property. So, why is this 

true? So, again when to give a proof of this statement, we will give a constructive proof; 

in the sense that the since L is regular, we will assume they are existed DFA for L; and 

using the DFA for L, we will construct an automaton for L bar. Since L is regular, let D 

equals Q, sigma, delta, q naught F be some DFA for the language L. So, what would be a 

DFA for the complement of L or L bar? So, observe how a DFA works.  

So, if a DFA gets a string, it transits from one state to another on every symbol or on 

every symbol of that string. And when the string in, the DFA is in either an accept state 

or not an accept state if the DFA is in accept state the string is accepted otherwise the 

string is not accepted. So, basically if I want to construct a DFA, which accepts all 

strings that are not in L, I would just look at the complement of the set of accepting 

states. So, all the states that are not an accept state to write it formally.  

So, we construct a DFA D prime for L bar, where D prime is equal to so the set states 

remain the same I mean it is essentially the same DFA except for the accept states the 

alphabet remains the same, the transition function remains the same as that of D, the start 

state also remains the same. The only thing that changes are the set of accepts state. So, 

in this case, it will be Q minus F, instead of F. So, this is the DFA for the language L bar. 



So, this proves that this statement is true that if L is regular, L complement is regular. 
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Now let us look at the next property that of intersection So, formally, A intersection B is 

the set of all strings x such that x is in A and x is in B. So, what we will show is if L 1 

and L 2 are regular, then L 1 intersection L 2 is also regular. So, how do we prove this 

statement? So, to prove this statement, we will actually so instead of constructing an 

automaton, we will use some of the closure properties that we have seen so far. So, what 

are the closure properties that we have seen so far? So, earlier, we have union, we have 

seen the concatenation and we have seen the star operation. And today we saw that under 

complement also regular languages are closed. So, how can I write L 1 intersection L 2 in 

terms of these operations? 

Here we will use very famous result in computer science or not only computer science, 

but in set theory that is due to De Morgan, it is also known as De Morgan’s law which 

states that L 1 intersection L 2 is can also be written as L 1 complement union with L 2 

complement whole complement. So, this is De Morgan’s law or De Morgan’s theorem. 

So, this is something that all of you must have seen at some point earlier. So, we will 

make use of this fact. So, what we know to begin with is that L 1 and L 2 are regular. If L 

1 and L 2 are regular by what we just saw L 1 complement is also regular. So, L 1 



complement is regular, and L 2 complement is regular. 

So, if L 1 complement and L 2 complement are regular then L 1 complement union L 2 

complement is regular. And from L 1 complement union L 2 complement, the whole 

complement is also regular. So, if I write it in steps, what we have is L 1 complement and 

L 2 complement are regular, which implies that L 1 complement union L 2 complement 

is regular which implies that L 1 complement union L 2 complement whole complement 

is regular which is nothing but L 1 intersection L 2. Hence, L 1 intersection L 2 is 

regular. So, we actually used closure properties that we have seen earlier to prove this 

intersection. 
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The next one that we will see is set difference. So, if A and B are two sets, A minus B is 

defined as the set of all strings x belonging to A such that let me write it in this manner, 

so set of all strings x such that x is in A and x is not in B. So, once again if I just expand 

this out, I can write A set difference B as A intersection with B complement. Now, if L 1 

and L 2 are regular then L 1 minus L 2 is also regular.  

So, once again the proof follows by a similar logic that if I have L 1 minus L 2 is nothing 

but L 1 intersection L 2 complement. So, if since L 2 is regular, L 2 complement is 



regular. And since L 1 and L 2 complement are regular, L 1 intersection L 2 complement 

is also regular. So, this proves the set difference. So, just a small point here is that, so I 

have only written for L 1 minus L 2, but the same thing can also be set for L 2 set 

difference L 1.  
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So, by similar idea let me write it here; also L 2 minus L 1 is regular, I mean you just 

replace interchange L 1 and L 2 in this argument. 
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The next property that we will see is reversal of languages. So, how do we define the 

reverse of a language? So, the reverse of a language is defined in terms of its strings. So, 

we define what is reverse of a string, and the reverse of a language is basically the 

reverse of all strings in the formal language. So, the reverse of a string is nothing but 

looking at the string from the reverse direction. Let me define what we mean by reversal 

of strings and reversal of languages. Let w equal to a 1, a 2 so on till a n be a string then 

reverse of w is the string a n, a n minus 1 so on till a 1 this the reversed string.  

And for a language L subset of sigma star, reverse of L is the set of all strings w in sigma 

star such that reverse of w was in L. So, I look at all strings that are there in L, I reverse 

them and the language that I get as a result is reverse of L. So, once again we want to 

study closure properties of reverse of L; in other words, we want to pass the question that 

if L is regular is reverse of L also regular. And as it turns out that like all other properties 

that we have seen today, this is also true. 
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If L is regular then reverse of L is also regular. So, what is the proof for this statement, 

how do we prove this? So, we will prove this by giving a construction. So, like the where 

we showed that complement is closed under regular languages are closed under 

complement we will assume that since L is regular, there is a DFA for L; and using the 

DFA for L, we will construct an automaton for reverse of L.  

So, how do we construct an automaton for reverse of L? Let D equal to Q, sigma, delta, q 

naught, F be a DFA for L; in other words L equals L of D. So, what is the intuition I 

mean what is the idea behind constructing an automaton for reverse of L. So, the idea is 

look at the set of strings that are there in language reverse of L. So, reverse of L basically 

contains all those strings that we get by reversing the strings in the language L. 

So, we will try to construct an automaton that goes back from the accept state to the start 

state. Or whenever I have a path in my automaton or a walk in my automaton from the 

start state to the accept state in the automaton D, I should have another corresponding 

path in the new automaton that I am trying to construct which has a walk from the accept 

state to the start state. So that is essentially the idea. So, and what kind of a automaton 

will it be will it be deterministic or nondeterministic.  

Let us look at an example or let us look at pictorial representation. Let see this is the 

automaton D that we have. So, we have the start state q 0, maybe this is accept state F 1, 



this is another accept state F 2. And maybe we have other states; so we have a state here 

which has may be two arrows coming to it from 0, and there is something going to 

another state on a 1 and so on. So, what we will do is we will reverse all the transitions 

that we have or in other words we will think of this as a graph, and we will construct 

another directed graph where all the transitions are reversed. 
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But now if I reverse all the transitions what do we get, so we will get another automaton 

d prime let say, where if I look at this state has - one incoming transition on 1, but it can 

have two outgoing transitions on a 0. So, it not necessary that from every state on an 

input symbol, there is a unit transition; you can have two transitions, you can have more 

than two transitions, and you can have zero transition.  

In essence what we get is not a DFA, but we get a NFA. And the start state of NFA, we 

will non-deterministically decide which final state I want to start from. So, instead of so 

we have F and F 2 over here, so I will construct a new state let us call it q naught prime, 

and I will add epsilon transition to all my accept state in the DFA D. And my accept state 

of D prime is going to be the start state of D. So, this is essentially the idea.  
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So, formally let us represent the DFA D prime. So, how do we formally define D prime. 

So, define an NFA D prime equals Q prime, sigma is going to stay the same, delta prime, 

q naught prime and F prime. Where Q prime is basically Q union with the new state I 

will call it this q naught prime, this new start state that I am adding; delta prime from a 

state q on a symbol a, what are the states that we go to. So, from delta prime on q on a I 

will go to all states r such that delta.  

Let us try to picture this. So, from delta prime on q from a state q on a symbol a, I go to 

all those states such that from those states I had a transition on the same symbol to q. So, 

all those states are such that delta r comma a, had taken me to q. And I also need to add 

transition corresponding to this q naught prime. So, delta prime of q naught prime on 

epsilon should take me to all states F such that F was a accept state in the DFA D. So, we 

have delta prime done q naught prime is of course, I have defined that has as an extra 

state and what is F prime. So, F prime is the set which contains only the start state of the 

DFA D. So, this is the unique accept state of the NFA D prime. 
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So, then L of d prime is nothing but reverse of the language L. So, we have constructed 

an NFA which accepts the reverse of the language L, hence reverse of L is regular. Now, 

we will look at two more operations, and we will study closure properties under those 

operations these are slightly non conventional. So, these are related to what are known as 

homomorphism of strings.  
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First let us understand I mean let us look at the definition of homomorphism. Let sigma 

be an alphabet so sigma is some alphabet. So, a homomorphism h is a map from sigma to 

some, one second, so let me just we can have different alphabets. Let sigma comma 

gamma be 2 alphabets, I mean they can be different alphabets one can be over 0 1, the 

other can be a b c or even they can be the same it is not necessary that they are different 

may be both are 0 1. So, this is also the alphabet 0 1, this is also the alphabet consisting 

of 0 1. Then a homomorphism h is a map from sigma to gamma star. So, basically what it 

does is that for every symbol in sigma, it gives a string in gamma, so some string over 

the alphabet gamma. 

Now, such that so now we can define homomorphism on strings also, so let w be a string 

in sigma star. Then h of w so let us write so let w equals a 1, a 2 up to a n be a string in 

sigma star; then h of w is basically the string h a 1 concatenated with h a 2 concatenated 

with h a 3 so until h a n. So, basically every string in sigma star is map to some string in 

belonging to gamma star.  

So, the closure property that we have with homomorphism is that if. So before define the 

closure property, let me define what is homomorphism of a language, so this gives us 

homomorphism of a string. Now let L be a language in sigma star h of L is defined as set 

of all strings w belonging to gamma star. Such that so I will write it as set of all strings h 

of w belonging to gamma star such that w belongs to l. So, I look at all strings w that are 

in the language L and I look at what is the map of that string with respect to the 

homomorphism h. 
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Now we are ready to state our the closure property that if L is regular then h of L is also 

regular, and the reason why this is true I mean I am not going to give a proof of this I am 

just going to briefly give a idea. So, you look at so since L is regular there will be some 

regular expression for L. So, look at the regular expression for L, so in the regular 

expression well will consist of symbols from your set your alphabet sigma. So, replace 

every symbol in sigma with the corresponding homomorphism. So, replace a belonging 

to sigma with h of a that will give you a new regular expression and that will be the 

regular expression for the language h for L, so that is essentially the idea. 

Similar to homomorphism or we can study the inverse of it, which is known as inverse 

homomorphism. Let say that h from sigma to gamma star is a homomorphism then for a 

language L belonging to gamma star. So, take some language in gamma star, I can define 

the inverse of this language with respect to h. Define h inverse of L as the set of all 

strings w in sigma star such that h of w belongs to the language L. So, if you want to take 

it as a map, so let say this is sigma star, we have gamma star. So, if I take a language L 

over here, look at all the strings that map to some string in L and so on. So, the collection 

of all the strings, which map to some string belonging to L is the language h inverse of L. 
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And what we again can prove is that if L is regular, then h inverse of L is also regular. 

So, I am not going to give a proof of this fact, but I will just leave it as an exercise for 

you to try out. 

Thank you. 


