
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 09 

SQL: Basic Queries 

 

The query in SQL is what it is useful for. 

(Refer Slide Time: 00:11) 

 

And the basic query and the typical basic query structure is of this very, very famous 

select, from, where. This is the very, very famous concept of select, from, where and 

what can you select, you can select a set of attributes and you can select from a set of 

tables and you can specify a set of and you can specify a predicate. Now, let us go over 

this one by one, these are attributes, these are relations and this is a predicate. 

So, what does this mean, this means that we want to select from the Cartesian product of 

r 1, r 2 to r m which is we first do this r 1 to r m and only select those tuples, where this p 

is valid and we do not want to output all the attributes of them, we only want to output 

the attributes A 1 to A n, so that is the essential meaning of it. So, if we write down the 

corresponding relational algebra query, so this is the following thing, the first one that is 

done is that r 1. 



So, all the cross products is taken, then we apply the condition p on that and then we 

select out only these particular attributes, so that is the equivalent relational algebra 

query. So, now, a couple of things is that, so the result of schema of all of these is 

essentially A 1 A n. So, that is the schema it produces, so it produces a new table, where 

the names of those attributes are A 1 to A n number 1, number 2 if p is left out p is by 

default true. 

So, if p is... So, you can if you leave out where then p is true, essentially everything is 

left and you can of course, select only one relation and then there is a special syntax for 

select the attribute, you can say select star, star means select all the attributes. So, this 

stands for all the attributes and p is one means it is true. Now, we have been saying that 

SQL is based on relational algebra etcetera, etcetera, but what is the big difference of 

SQL from relational algebra is that SQL is a multi set, SQL relations are multi sets this is 

a very important thing this is a multi sets. 

So, what is a multi set, it is just like a set, but an element can repeat, so it is a bags of 

tuples. So, a particular tuple may come may show up more than one time in an SQL 

query, which is fine in relational algebra it is a set it is strictly a set. So, it does not let 

you select a tuple more than once, but in SQL by default it is a multi set, so it can select 

multiple tuples. So, a multi set example just to highlight the point again, so A, A B is a 

multi set, because although the element A is the same thing it is repeated and this is not 

equivalent to A, B, this is not the same as A, B. 

But of course, this is equivalent to A, B, A because the set order does not matter, so that 

is a multi set. So, if; however, the SQL can behave like a relational algebra by specifying 

this key word distinct. 



(Refer Slide Time: 03:54) 

 

So, if one says select distinct, this distinct essentially make it a set and not a multi set and 

the opposite of this distinct is all which makes it multi set. So, all is by default, so we 

will go over each of this constructs select from where in some detail next. 

(Refer Slide Time: 04:23) 

 

So, we will use the same banking example as we have been using earlier. So, a branch 

has a branch name, branch city and an additional attribute called assets, which is the total 

amount of all the assets in the branch. The customer has a name and a city, account has a 

account number which branch it is in and the corresponding balance and the loan has a 



loan number, branch name and amount, the depositor is the customer name and account 

number and the borrower has a customer name and loan number. 

So, let us go over some examples, so first of all suppose we want to select all branches, 

where we want to select all branches from the city A B C. So, how do we do that? So, 

very simply we want to select all branches, so we want to select branch name from the 

table branch, where the branch city is you can simply say A B C. So, this selects all the 

branches from the city A B C just to correct it, so this is branch city and this is an 

equality operator, which says that within a street what is a city. 

Now, suppose we not do not just want the branch name we also want the assets, but we 

do not want the assets in terms of by saw or whatever suppose and we just want it in 

terms of some other arithmetical operation. So, we can simply say that we can say simply 

say assets by 100 or whatever it does not matter any arithmetic operation can be done on 

the select thing as well. So, this is one way of doing the select, but and the from is 

essentially from branch etcetera, etcetera and let us now go over to someone or more 

examples on how to select something from two tables. 

(Refer Slide Time: 06:12) 

 

So, suppose if we do this, if we simply write this select star from depositor comma 

account then what happens by the way this is one interesting point to note that the select 

and from are mandatory. But, the where can be omitted we have if the where is omitted it 

essentially means where true; that means, all the tuples are select. So, if we just say 



select star from depositor account, this is essentially a Cartesian product of these two. So, 

this is a Cartesian product of depositor and account. 

And essentially every tuple that is in depositor account, then all the values are selected. 

Now, what happens is that depositor and account both have this attribute name a number. 

So, how is it finally, shown how is it actually being represented is that, so the number 

what the point is that a number this is a clash of the name and this is ambiguous. So, if 

something needs to be done on one of the account numbers that needs to be specified. 

So, for example, if we want only the depositor account number, so what we may need to 

do is instead of this what we will need to do is, you say select depositor dot. So, this is 

the dot operator dot a number and suppose, we also want to select the, whatever balance 

etcetera. So, depositor dot a number; that means, now we are only selecting the a number 

from the depositor column and by the way this if we just write this query, as you can see 

that this query this is the Cartesian product query, this is not very useful we would rather 

want the join that we saw earlier. 

So, how do we specify the join, again the join is an equality join, so we have to simply 

say a number of account is equal to a number of depositor. So, we have to make you can 

simply say a number is equal to a number. Now, you can see that this does not make any 

sense, this is ambiguous, so what we need to say is we need to qualify this whenever 

there is an attribute that is repeated you need to qualify it with from which table it is 

coming. 

So, we need to say depositor dot a number is equal to account dot a number and that is 

the way to select this. So, that is the way things work, this is important this essentially is 

the way of doing the join and we will see the example of join later. And now what also 

happens is that, so couple of more things is that, this depositor dot a number this is a very 

clumsy name to use further. So, the SQL let us one rename operator, so you can say 

instead of depositor dot a number, you can add in depositor dot a number as let us say 

aid. 

So, what the finally, what will be selected is aid and a balance table, so this is the table 

with aid and balance, because depositor dot a number is renamed. So, the s operator 

essentially is for renaming, this is the renaming operator as aid and even depositor can be 

renamed. So, we can write the above query in the following manner, a relation is 



renamed it can be used directly here. So, again you can of course, have renamed 

depositor as d and just say d dot a number and d dot a number here and ((Refer Time: 

09:50)). 

So, that can be also done, so this is renaming, renaming is not just a way to reduce the 

name space, clash or etcetera is not just a way of convenience sometimes it is necessary 

and then here is an example, where it is necessary. 

(Refer Slide Time: 10:05) 

 

Now, these request to find branches from branches with name DEF, this is a little 

complicated query, but this can be broken up into the following manner. So, let me write 

down the answer to this query and then it will be clearer as to how this can be done. So, I 

am saying select you want to find the names of all branches. So, there is some b name 

that we require from of course, there is the branch that we require. 

Now, the where part, so what do we want, we want the branch the b name of the branch 

whose assets is greater than the branch whose name is DEF. So, what do we do we 

require actually two branches here, because we need branches from the branch relation 

twice and now this is a problem. Now, both are branches, so how do we do that, so we 

cannot use both as branches we must rename. 

So, let us say we rename the first branch as T and the second brand as S we want branch 

from T, where T dot assets this must be greater than S dot assets and S dot branch name 



is equal to DEF. So, let us analyze this query first of all, so there are we are selecting the 

branch twice here and here, one is renamed as T, one is renamed as S and this is 

necessary if without renaming it cannot all. 

Because, there are both are branches and we are saying that we want to select everything 

from this relation branch, such that it assets is greater than S, but which kind of S only 

those S whose branch name is DEF. So, essentially this to select the assets of the branch 

whose name is DEF and we want everything else, where that is greater and only 

selecting that this is an example of a little complicated query and where renaming is 

necessary and this also highlights the fact that the same name branch is used twice. That 

is why the renaming is necessary, just to now that we are inside this, this branch name is 

equal to there are certain kinds of string operations that we can define. 

(Refer Slide Time: 12:36) 

 

So, we have been seeing this equality operator is equal to DEF, this means this matches 

exactly DEF, you can also say like DEF. So, wherever this is like a percentage, so the 

percentage essentially is substring. So, everywhere where the name DEF is there it will 

be selected and there are many such things and so you can say a dot, so you can say like 

dot DEF. So, dot stands for a particular character and there is a regular expression thing 

that can be done here, so this can be checked up. 

So, one important thing that we have been studying about relational algebra and SQL is 

that these are sets or multi sets. So, let us stick with SQL these are multi sets, so; that 



means, by default there is no ordering of the tuples. Now, which is true, but sometimes 

the output needs to be in a particular order, now once more this is an important point to 

remember is that we the SQL let us you run a query and let us you see the output of this. 

So, now, how to actually visualize the output, the output can be in any order that the 

database engine wants,. 

But, suppose you want the output to be in a particular order, so you can actually sort, but 

do remember the sorting is done after all the tuples have been selected and this is just a 

sorting is done only for the output of this, this is got no actual meaning in the relational 

algebra model or SQL model. So, how do we do over the ordering? 

(Refer Slide Time: 14:15) 

 

So, you simply use there is a construct called order by, so there is a construct order by 

which let us you order the tuples. So, you can say select c name from customer order by 

c name whatever. So, this is the cname will be now in order in ascending order by 

default, if you want to do something else, you can say descending. So, by default this is 

ascending you can also add descending to make it descending order. 

So, this is one kind of operation, the other kind of operations is set union etcetera can be 

done and you can also say distinct, etcetera all of these can be done, so this is the set 

operation. The next important thing that what we want to do is aggregation, so the 

aggregation can be done. 



(Refer Slide Time: 15:12) 

 

So, again the aggregation is being done, so the aggregation, so five operations are 

allowed to be used there are average min, max, sum and count. So, these are the five 

aggregation operations that can be done and a query something like this can be specified. 

So, select average balance from let us say, so we would select the average balance from 

account, where let us say branch name is equal to DEF. So, essentially it selects the 

average balance of all the accounts in the branch DEF, so this is an aggregation operation 

that is being done on the balance. 

Now, as we saw earlier it is not always useful to apply the aggregation on the complete 

set of tuples. But, on certain groups of tuples, so how does the grouping done, the SQL 

offers a way of grouping the tuples which is essentially using the construct group by. So, 

there is a construct group by this let us you group by. So, again we can do the following 

thing, so we can say account this thing or also let us write down another query. So, what 

are we doing here, this is important to understand is that. 

So, what are we trying to do here is the following is that we are doing certain query, but 

we are saying group by a branch name. So, whatever is the output up to this point from 

depositor account etcetera. So, we are essentially selecting all the accounts and on the 

depositor information around it, we are grouping by b name. So, all of those tuples that 

are result as this are then grouped into different kinds of things according to how whether 

they have the same branch name or not. 



Now, once they have the same branch name for each of this branch name we are 

applying some aggregate operation, which is a count of c name. So, the answer to this 

query is looks like is of the following form is of the branch name and count of c name. 

So, for each of the branch names we will have a count of how many customers are there 

that is the thing. So, this is the same as the relational algebra that we talked about the 

relational algebra grouping and aggregation that we talk about. 

Now, one important thing is that the attributes in the select clause that are not 

aggregated. So, this is our attribute in the select clause that are not aggregated, so this is 

not aggregated and this is aggregated, so this is not aggregated they must appear they 

must be grouped. So, they must appear in the group by; otherwise, which has got no 

meaning. So, for example, we cannot select branch name and let us see we cannot select 

branch name and branch city on the thing. 

So, this branch city would have been wrong, because there is no way to get the branch 

city. Once you have selected by branch name there is no way to get to the branch city or 

once you have selected... So, it does not make any sense, so whatever is not aggregated 

in the select clause must be present in the group by. So, this is mandatory; otherwise, if 

you just say select branch name, branch city this thing then it is wrong. So, this is wrong 

you cannot do this, this is one important thing to remember. 

So, then the group by now you can say this is group by, but you can also qualify the 

groups and how do you qualify the groups, you can qualify the groups. So, you can say I 

want to select particular groups. 



(Refer Slide Time: 18:59) 

 

So, the qualifying is done by the having clause, so instead of saying select branch name 

and count c name from everything etcetera, etcetera you can say I want to select the 

branches, where the average balance or whatever, the average balance is at least some 

1000 rupees or something like that. So, what you will do is, you will write down the 

same query group by etcetera and in the end you will add having average balance greater 

than whatever 10,000 rupees or something like that. 

So, this four things let me highlight this four things to this five things together is the 

query. So, select branch name count c name from depositor account, where depositor dot 

d name is equal to account dot a number, group by branch name having average balance 

greater than 10,000. So, you are not going to do the group by on every branch name, you 

are going only going to do the group by on those branch names, where the average 

balance is greater than 1000. So, this is like qualifying a particular group, so this is 

useful, because sometimes you want to analyze only certain groups which are useful to 

your analysis. 



(Refer Slide Time: 20:20) 

 

So, we will next consider the issue of null in SQL a value can be checked whether it is 

null or not by this following construct is null or is not null an example query is of the 

following form select l number from loan, where amount is null. So; that means, it will 

try to find out the loans, where the amount there is some problem with the amount it has 

not been updated correctly etcetera. Now, for null again the same issue as the relational 

algebra happens, so this does follow that same three valued logic and evaluation. 

So, result of the expressions involving null evaluate to null and comparison with null 

returns unknown plus the aggregate functions ignore null. So, for example, average 

etcetera will ignore null, but the only difference is the count star does not ignore null, 

every other aggregate operation ignores null. So, we will next move on to a very 

important part of SQL, which is called a nested sub query. 


