
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 06 

Relational Algebra: Extended Relational Algebra 

 

(Refer Slide Time: 00:14) 

 

Let us move on to something called an extended relational algebra. So, this is the 

extended, so it does increase the power, so it increases power over basic relational 

algebra. So, the operators here is there are three operators, first is called a generalized 

projection, the second one is aggregation and the third one is called outer join. So, at 

least from the names it can be guessed that this is a generalized projection; that means, it 

has got something to do with the projection and tries to make it more generalized, so it 

tries to extend it is power. 

Similarly, outer join is some form of join, but with something more and we will see 

exactly, what all of those things and of course, aggregation is something new. So, let us 

go over each of this in a little bit more detail. 



(Refer Slide Time: 01:32) 

 

So, the first one is generalized projection, so what it does is that it takes the projection 

operator, the normal projection operator. So, the normal projection operator allows only 

it names certain attributes and just selects out those attributes, it just projects out only 

those columns. So, what the generalized projection operator does is that it allows 

arithmetic operations on those projections. So, arithmetic operations on the projected 

columns and what do I mean by that, so it essentially says that it is defined like this, this 

is a function F 1. 

So, you can define some k functions over the expression, so these are instead of just 

names these are functions, so these are generalized arithmetic operations or generalized 

arithmetic functions. So, for example if we take this example suppose there is r, which is 

defined as A, B and C, now suppose, what I do is I do something like this, so B minus A 

and C on r. First of all, the schema for this becomes B minus A and C. Why is that? 

Because, this schema these are copied, essentially this is the first thing and this is the 

second attribute and B minus A. 

So, B minus A, so it is done from here B minus A is 0 comma 5 fine, then this is 2 minus 

1 this is 1 comma 5, then this is again 1 5, so this goes here, so there is nothing new is 

output and this outputs 2 comma 8. So, these are the answers, then now, well you can 

change a little bit on this, so instead of this thing you could have said 2 B minus A, then 

this could have become 2 B minus A by C. So, from this, this would have produced 1 



comma 5, the second one would have produced 3 comma 5, the third one would have 

produced 4 comma 5 and the fourth one would have produced 6 comma 8. 

So, you can see that any operation can be done, now instead of 2 B minus A, you can do 

lots of other, other things etcetera. But, this is how the generalized projections are; this is 

what the generalized part is because it works on any function. So, generalized projection 

that is how this works. 

(Refer Slide Time: 04:08) 

 

The next one is aggregation, so it let us one aggregate, so it can use certain aggregation 

function, such as average, mean, max, sum, count, so that is what it does. So, it can be 

applied on tuples or more importantly, it can be applied on groups of tuple. So, I mean 

this can be applied on the entire relation or on certain groups of tuples and these groups 

can be defined and certain groups can be defined, as well count the grouping is done. So, 

the generalized form of this aggregation operation can be written in this manner. 

So, there is this generalized G function and let me try to write it there and you are 

applying some function F 1 on A 1 and so on, so forth. So, you can apply some n 

functions on this and a grouping is defined using some grouping operators, grouping 

values, which is G 1 to G k of course, this is on some expression here. So, what it means 

is that, this expression is first taken and then, the grouping is done using this G 1 G 2 k. 



Then, for each group where each group according to this G 1 to G k, each of these 

functions are applied, then F 1 A 1 F 1 on the attribute A 1which is part of the G 1 to G k 

F 2 on A 2 F n on A; that is when applied. Now, how is this grouping don? This 

grouping is done, so tuple t 1 and t 2 are in the same group if they agree on all G 1 to G 

k; they must agree, so for all of them. So, essentially this everything has to be same for t 

1 to t 2. 

Now, what does that mean? Let us again take an example that is the best way of 

understanding it. So, let us say this is A B C, there is a relation r, A B C, so now, you are 

doing this operation, let us say G sum over C; that is all that is being done. First of all the 

schema that is produced is simply sum of C; that is what is being done and what is being 

done is that just the sum over. 

So, let me explain what is it, there is a grouping here defined; that means, that every 

tuple is in the same group, so everything is in the same group and essentially just the 

column C is summed up, so the answer to this is that is it, this is the answer to this. 

Instead if you try to define a little more complicated query for us, suppose you say G is 

being done sum C; that is fine, but with an A. So, by the way I should say that this is of 

course, some r and this is also of course, some r, so what is being done is that this is the 

following. 

So, first of all the schema of this is A and then, sum C. Why is that? Because, this 

grouping is done on A, so all the tuples must agree on the A value and that A value is 

written here and then, the corresponding sum is done. So, how do we do that? So, first of 

all, all the tuples that agree on the A value; so that means, these two are in one group and 

these two are in the second group. 

Now, for these two the A value is 1 and the sum is just this, which is 10 for these two 

this is two and the sum is 13. Now, suppose there were another tuple, which is what 

would have happened is this is in a group by itself, so these would have been simply 3 9. 

So, this is the answer to this query of the aggregate operation with this grouping; that is, 

what that it has being done. 



(Refer Slide Time: 08:24) 

 

Let us see the final operator in this space is that of outer join. So, in outer join, what 

happens is that it is an extension of join to retain, so it is an extension of the normal join 

that you see, join to retain more information fine. So, how do you retain more 

information is that, it first does the join and then adds tuples to the result. Now this 

seems to be very interesting, that how can it add tuple to the result, which is not defined 

as part of the join. 

So, for the first it computes the join; that is given as part of the condition about that join, 

it adds all those tuples that are part of the join they need to add certain more tuples. Now, 

what more tuples, this requires the use of something called a null value and we define 

null earlier in some connection that null is a part of every domain etcetera. So, null can 

be considered to be the value for any attribute of any tuple, this is the specialty of null. 

Now, let us, define one at a time what is it, so suppose we first define, what is called a 

left outer join, so this is called a left outer join, fine. So, this is denoted by r, this is an 

interesting operator, this is the join operator with theta, because this is left outer, there 

are two strokes on the left, so this is r left join s. So, what it does is that, it retains every 

tuple from left relation. Now which is the left relation? Of course, this is the left relation, 

because this is on the left of this, left r; you can say the first relation it retains everything 

from the first relation. 



(Refer Slide Time: 10:52) 

 

Even if it does not obey join condition, even if it does not obey join condition theta, still 

truly not clear us to, what is happening, but what is happening is essentially this. So, let 

us probably take an example; that is the easier way to understand, now if we do a natural 

join of r join s simply natural join. Now, what happens is if you do a left join of s, what it 

does is that it first completes the join which is 1 5 7 2 6 8. 

And then, it retains every tuple from the left relation, even if it does not obey the join 

condition, now which is the tuple that it does not, so this tuple has already been captured 

as part of the join condition this tuple has already been captured as part of the join 

condition, but 3 and 7 is not captured. So, it must retain 3 7 of course, this is A B and C 3 

7. The question, then comes is, what will happen to this value of C it has got nothing 

defined, but then the power of null comes it essentially says if nothing is defined with 

this null. 

So, the answer is 1 5 7 2 6 8 and 3 7 null, so this is a special value that is being used and 

this is a left join. So, now, that the left outer join has been defined it is probably easier to 

define the right outer join, which is essentially the same thing except the left here, is 

replaced left of the first relation is replaced by the right relation or the second relation 

and everything else is analogous. So, now, to just complete the example the right outer 

join for that same example is this way. 



So, that first of all the operator is written this way, again and it has once more it has the 

same schema as A B C. Now, once more first of all, the first thing to do is to complete 

the join, which is 1 5 7 2 6 8, then, what is left out. So, this is captured from the right 

relation this is captured from the right relation this is not captured, so this needs to be 

copied down. So, 4 and 9 and this is added with null, so that is the right outer join. 

(Refer Slide Time: 13:28) 

 

Now, that right outer join is defined, so there is something called a full outer join, which 

is the combination of both right outer join and left outer join. So, this is the operator for 

this and it captures from both left and right relations. So, once more going to, that if you 

go back to that example of 1 5 2 6 3 7, then the complete outer join s is defined as A B C 

the first we complete the join, which is 1 5 7 2 6 8 and then, we complete the left and 

right join. So this is 3 7 null and 4 null 9, so everything is completed from. So, these 

were the things that were left out here and left out there, so both find their way in the full 

outer join. 



(Refer Slide Time: 14:39) 

 

Now, that these outer joins are defined, so that normal join is sometimes called an inner 

join the, what inner comes is now, understandable, because there is an outer join and 

sometimes the word outer join this outer part outer join the outer part is omitted. So, then 

what do we essentially get is the left join, because there is no left outer join a right join 

and a full join fine. Because, there is no left outer join right outer join and full join. 

And, when no theta condition is specified, when it is just the word join is used when 

simply the word join is used, then it translates it is generally meant as a natural outer 

join. So, these are just part of the terminology fine. So, then there is a little bit left about 

these relational algebra queries, which is the special value about null. So, we have 

already seen, what how null are useful etcetera and null is a special value. 



(Refer Slide Time: 15:51) 

 

So, it essentially denotes an unknown or a missing value and we saw in the examples in 

the outer join, that when A and B are joined, we do not know the value of C is, so it is a 

unknown or missing and that is being denoted as null. So, now, this null and let us see, 

what the aggregate operation operators ignore null, so aggregate operations simply 

ignore null. But, what happens with arithmetic operations arithmetic operations may 

require comparison such as 5 equal to null 5 greater than null etcetera. 

So, what happens is that, so for example, 5 equal to null this evaluates to null or 5 greater 

than null etcetera, so all of these things evaluates to null. So, a comparison with a null, 

generates another null comparison with a null, there is one very interesting exception, 

which is null equal to null this evaluates to true. 



(Refer Slide Time: 17:19) 

 

So, null equal to null is actually true, so the three valued logic. So, using null, null 

generates to a, what is called a three valued logic. So, we have been all used with binary 

logic, which is using 0 and 1 this is a three valued logic, the three values are 0 1 and 

unknown. So, essentially true false and unknown, so these are the three values and let me 

write down the rules for all of these three valued logic. 

So, first of all the or table, so or is unknown or true evaluates to true, because there is a 

true and we does not matter what the done, unknown or false evaluates to unknown, 

because the false does not matter and this is it, unknown; that is it unknown or unknown 

that evaluates to unknown and is similar. So, unknown and t is unknown and false is 

false unknown and unknown is equal to unknown and the knot is there. So, not of 

unknown is equal to still unknown. 

So, this is the three valued logic table that we require to move forward and the select 

operation treats unknown as false I mean if there is something unknown, then the select 

operation will not select it; that is what it will be meant. So, that completes the part about 

the queries of this relational algebra and we will later go over, how do use relational 

algebra for database modifications. 


