
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 05 

Relational Algebra: Additional Operators 

 

Last time we saw six basic operators. 

(Refer Slide Time: 00:12) 

 

Now, we will introduce some additional operators, so these are additional operators, so 

these additional operators are let me first enumerate them and then I will go what does it 

mean. So, first one is intersection or the set intersection, then the second one is join, third 

one is called division and the fourth one is assignment. So, essentially this additional 

operators let you do this simplify the queries, but does not add any new power to the 

basic relational algebra. 

So, any of the queries that can be solved using these new four additional operators can 

also be solved using the six basic operators. So, these four operators do not add any 

powered to the type of queries that can be solved. However, this simplify writing the 

query very heavy and we will see examples of that later, but let me first go over each of 

these operators to see what they mean. 



(Refer Slide Time: 01:42) 

 

So, the first one is set intersection, set intersection is very simply the set intersection that 

we all understand for normal sets. So, essentially r intersection s is t such that t is r and 

so it has to be both the cases and just like the set union and the set difference, they have 

to have the same schema etcetera, etcetera and it is quite simple actually. So, just to 

complete let us have an example, so suppose this is A B with 1 1, 1 2, 2 1 and s is the 

same schema A B with 1 2, 2 3 that is r intersection s will produce again A B. So, the 

thing that is common in both the cases is simply this, so the only answer is 1 2. 

Now, the question is we are claiming that set intersection is not a new operator, it can be 

defined using the other operators and the answer to that how do we do that, because 

essentially you can see that set intersection r intersection s can be written in terms of the 

set difference operator. So, use the set difference operator, the set intersection can be 

written, so it does not really add any new power. 



(Refer Slide Time: 03:08) 

 

So, let us go to the next operator at join and this is a very, very important operator as we 

will see, but again it does not really add any new power, but let us first define what join 

is. So, the symbol for join is this, so this is like two triangles facing each other and we 

define there is a condition theta, so this is essentially sigma theta over. So, now, we can 

understand why I have been saying that this does not add any new power. 

So, essentially what it does is it takes a Cartesian product and then select certain tuples 

based on the predicate theta. So, it is a selection using theta on the Cartesian product and 

we have already seen one example. So, the when we took a borrower cross loan, when 

we took that Cartesian product and then applied a theta which is borrowed that b number 

is equal to borrower dot l number is equal to loan dot l number, this is essentially a join 

using this condition. 

Anyway, so let us see an example, so join is actually the very useful, so there are some 

versions of join that are defined, the first one is called an equality join. So, equality join 

essentially is that the theta condition contains equality, that is the equal to operator and 

that is the equal to operator. So, for example, r theta you can say B equal to C whatever 

is equal to s. So, this equality operator is there, that is why it is an equality of join, the 

next very important part is called a natural join. 

So, this will come up many, many times when we are studying SQL, etcetera later on and 

by join generally people do mean only natural join. So, natural join by the way has it is 



own operator, this r it can be just denoted by this star operator, this is essentially equal to 

r of theta s. Now, to define a natural join between r and s, r must have an attribute A and 

s must have the same attribute A. So, I mean I am taking, so r must have some attribute 

which is the same name and the same schematic meaning as s, so it is essentially saying r 

dot A is equal to s dot A. 

So, when there is the same attribute between two relations r and s and an equality join is 

proposed between r and s on that attribute on only that attribute, then it is called a natural 

join. So, there has to be a common attribute, so that is the thing there has to be a common 

attribute and that is why it is defined. Now, a couple of interesting points about this is 

that equality join for say does not change the schema or any join does not change schema 

from that of r cross s; however, natural join changes schema. 

So, how does it change the schema? It essentially has the common attribute only one 

copy of the common attribute. So, it does not store both r dot A and s dot A which is 

obvious, because r dot A must be equal to s dot A, so it keeps only one copy, so it does 

change the schema little bit, it essentially removes the redundant attribute. So, that is one 

thing to remember and let us see some examples of join. 

(Refer Slide Time: 06:56) 

 

So, suppose this is r with the schema of A B and these are the tuples there 1 1, 1 2, 2 1 

this is s with the schema of A C and 1 2, 2 3. Now, if we do r star s this can be also 

denoted as r join s, so this also stands for natural join, so this is natural join, so the 



answer for this is that. So, the first that common attribute is identified which is A, so A is 

the common attribute, so only one copy of it is kept, then the rest are copied, so B and C 

and this is the schema of A, B, C then only those tuples are taken into account where A is 

same. 

So, between this the A is the same, so this is copied, so only one copy of one is kept, B is 

1 and C is 2. So, this is that between these two, these join does not happen, because the A 

is not the same, then we move on this joint does happen, because this 1 is equal to 1 and 

then the copy that is kept is 1, for B it is 2, for C it is 2 that is the thing. And similarly, 

this does not happen, because the joint conditions do not agree, this does not happen, 

because the join condition do not agree and this does happen, because 2 is the same and 

this produces 2 1 3. 

So, this is the answer for the natural join, so this is once more the natural join for same r 

natural join. So, this is one example of how to define natural join, etcetera. 

(Refer Slide Time: 08:43) 

 

So, let us now move on to the next operator which is called division, now division is a 

slightly complicated operator. Essentially what division tries to do is let me give you the 

first big definition, the formal definition of division r divided by s is all tuples t such that 

t is in the projection of R minus s of r and for all u in s t u is part of r. So, this is really 

complicated as it sounds, but let me tell you what it does, essentially let me write it down 



this following with first of all the schema of r. So, suppose r follows the schema r and s 

follows the schema s. 

Now, for the division operator to be applied it must be that s the schema s is a subset of 

R, this is an important condition, this must be holding. So, this must be s is a subset of R, 

this must be happening; otherwise, this division operator cannot be applied. The number 

two is that the schema of r divided by s essentially becomes R minus s that is why this is 

important. But, more importantly what does r divided by s does is that it chooses tuples 

from this particular schema R minus s such that Cartesian product of these with s, this is 

the s from this schema are all in R. 

So, suppose you take a tuple from R dot s, suppose the tuple is t, so Cartesian product of 

this with s is suppose this tuple is u. Now, the Cartesian product... So, t u must be part of 

your r relation r, because this is what the Cartesian product you have taken, so this is 

what this condition says. Now, this is for all u’s the Cartesian product, because it is a 

Cartesian product this captures all u, this is the all u part and this part is the t belonging 

to r and this is essentially saying what is the schema of this, this is from this part, so 

which is what it is doing. So, it is a little complicated example and let me go over an 

example to say what I have been saying. 

(Refer Slide Time: 11:31) 

 

So, here suppose r is A, B, C, D this is the schema of r and this is your s which is just C 

and D which is just 2 7 and 3 7. So, first of all r divided by s, so first of all we must 



decide what the schema is, now the schema is as I told you this is essentially you take 

this schema and this schema and it is the of difference. So, the schema is only A B that 

part should be easier to understand, now suppose you have a particular tuple t here. 

So, this is particular tuple we will fill it up later, but this t when joined with these two. 

So, that is taken the Cartesian product both of them must be in the original relation r, so 

both of them must be in this relation r. So, let us try and fit some bill first of all, let us see 

if does 1 5 is fit the bill, if 1 5 fits the bill then 1 5 2 7 must be part of that which is true, 

then 1 5 3 7 will be part of that. So, 1 5 is an answer set, so 1 5 is correct. 

Now, let us take 1 6 now 1 6 again it must be joined with both of these, so 1 6 2 7 is not 

part of the answer set, so this is gone, this is not part of this thing. So, then let us take 2 6 

is 2 6 part of it well 2 6 2 7 2 6 3 7 are there. So, this answer correct answer then is 3 6 

there 3 6 2 7 and 3 6 3 7 are both there which is correct and 3 5 no, because 3 5 2 7 is not 

there. So, the answer essentially is then simply let me write it down, the answer is 1 5 2 6 

3 6, so this is the answer with A and B course. 

So, now, the question is how are this kind of division such a complicated operator useful. 

So, we will see some examples where the division operator will be used, but just a very 

quick basic idea to start making you thinking is that if this part of the division then it 

must happen. So, essentially you take the relation r and you divide by s, so you divide 

such that... So, if whatever 2 and 7 is here, so you select only those tuples where 2 7 and 

3 7 are both present, so you get out that part and you just select. So, this is what the idea 

is, but we will see an actual example later. 



(Refer Slide Time: 14:11) 

 

So, we will move on to the last general operator which is the assignment, the assignment 

this is denoted simply by this assigns to E of r this is almost similar to the renaming 

operator, but what it does is that. So, this is an expression, the expression has been 

applied on r and you temporarily assign it to a variable s. So, this is very useful in 

complex queries, where instead of just writing things on top of each other, you assign to 

s an then you write it down. 

So, for example, in the previous query what some queries back, so you can write s to be 

that whatever you say. So, that you can say this is borrower natural join with loan and 

then you can say the answer to my query is sigma branch name is equal to ABC on s. So, 

you can see that this does not add any power to this, but it essentially simplifies writing 

the query. So, that finishes the basic definitions of what the additional operators are and 

we will go over some examples next. Now, let us go over some examples that, uses the 

additional operators that we learnt. 



(Refer Slide Time: 15:40) 

 

So, coming back here this is the same banking example that we have been following and 

so let us start solving the some queries, so here the operative word is both. So, which 

means that this is a set intersection query and the way to solve this is essentially well we 

are just doing this let us say borrower intersection with depositor. Now, this is 

interesting, because although we say find all customers essentially we meant to say find 

names of all customers. So, that is the, because customer name is the identifying 

information for customer. 

So, we can just do this now more importantly the borrower, so every customer which has 

a loan must be in this borrower table and every customer who have an account must be in 

depositor table. So, we can just use these two relations and solve this query, more 

importantly this projection of customer name must be done before the intersection is 

done. Because, borrower cannot be directly intersected with the depositor, the reason is 

they do not have the same schema. 

So, we must first ensure that the schema is the same and then the intersection can be 

taken. So, if this is done let us move on to the some other queries, so this kind of queries 

wherever there is a find all customers, who have an account in every branch. So, the 

operative word is every branch, wherever there is a every branch kind of a query, this 

points out to the division operator, because we need to find out. So, the every branch that 

is what the division queries try to solve. 



So, essentially the way to solve this is that we need to first find out this customer name 

and branch name from the depositor natural join account. So, what does the depositor 

natural join account does, this depositor natural joint account gives the information. So, 

depositor this with account gives the information about all the customers and everything. 

Now, we are selecting only the customer name and the branch name, now this branch 

name must be in the every... 

So, the branch name city is DEF, so that is what we need to do. So, this when we divide 

it with the branch name of everything, where the branch city is DEF from of course, the 

branch table, so let me do it one by a little bit one at a time. So, what does this mean? So, 

this branch city is equal to this from the branch this selects all the branches in every, so 

essentially it is every branch in the city DEF. Now, we are selecting only the branch 

name out from this, we only that is what we need and here it select us customer name 

and the branch name from every possible depositor. 

And then, if we do a division then it essentially selects out this customer names, such 

that this has an account in every branch. Because, this division operator makes you sure 

that this, so this customer name will be part of it only when this entire join entire 

Cartesian product is present here. So, this is how to solve a query where there is this 

every branch, so whenever there is a every branch or you can say all branches of... 

So, whenever this kind of query then the natural way to think of it is using the division 

operator and we will have many more examples etcetera later for your practice, but this 

is what the way to think. So, this finishes part of this normal relational algebra, where we 

have seen six basic operators plus four additional operators just to remind you that the 

additional operators do not increase the power, but it makes the solving some of the 

queries easier. Next we will go over an extended relational algebra, so we will define 

some more operators, where it does actually increase the power of relational algebra. 


