
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 43 

Concurrency Control: Deadlock Prevention and Deadlock Detection 

We will continue with the Concurrency Control protocols, as we have already seen many 

protocols, locks and timestamps based ordering protocol and so on, also the multiple 

granularity locking. But, if you have noticed in all of them, there is one recurring 

problem which is the deadlock. So, most protocols can fall into this trap of deadlock, so 

the basic time, the basic to pale protocol can fall in the trap of deadlock. 

But, the timestamp ordering protocols cannot of course, but the locking protocols can 

always go into this deadlocks stay. So, next what we will be studying is to see how to 

handle this deadlock. 

(Refer Slide Time: 00:51) 

 

So, the first thing is the deadlock prevention that we will study. So, what I mean by 

deadlock prevention is that, this type of scheme, the deadlock prevention schemes never 

allow a system to enter into a deadlock. So, they never allow deadlock, so if these 

schemes are run, the system will never deadlock. So, we have already seen an example 

of this, the timestamp based ordering protocols are of course, deadlock prevention 

schemes. 



So, the timestamp based, the protocols that use the timestamp, the basic timestamp 

ordering protocol and the validation based protocol, they are we have seen that these are, 

this deadlock prevention scheme, because they never allow deadlock, then there are two 

as... So, what happens in that is that, so in this deadlock prevention schemes is 

essentially… In the timestamps based ordering protocol what happens is that, when a 

transaction or when an operation of a transaction appears out of order, then one of them 

must roll back. 

If you remember in that read timestamp while we are checking the read timestamp and 

the write timestamp, there are two ways. We said either the transaction T that is trying to 

write it should roll back or the transaction T 1 or T 2 for which it is not correct should 

roll back. So, now,... So, which one should roll back that is a question. So, whether it is T 

or which is it is T 1 or T 2 that is the thing, so for that there are these two schemes. 

(Refer Slide Time: 02:21) 

 

So, the first one is called a wait die scheme. In a wait die scheme, this is also, this is a 

non pre emptive scheme and we will see what does a non pre emptive mean, but just 

remember from the time being that this is a non pre emptive scheme. What happens is 

that, here the older transactions wait for newer transactions. So, suppose there is an old 

transaction, the T 1 that wants a particular lock on an item x and T 2 which is a younger 

transaction. So, T 1 is old and T 2 is young, T 1 is currently holding that lock. 



So, then the older transaction simply waits for the young one to finish, so the old waits 

that is fine. So, if the older comes after the younger and the T 2 is already holding the 

lock and the older one wants to it, it just waits. The younger ones; however, do not wait, 

if a younger transaction wants this thing wants a lock, they simply roll back. So; that 

means, the younger ones are do not wait for the older ones. 

So, if the younger one comes and sees that an older one is already holding the lock, it 

simply dies, so that is why it is the thing. So, this is what is happening. So, the younger 

one, young one is holding, is waiting for a lock it does not wait for a lock, it essentially 

just dies. Because, and older transaction is currently holding the lock, so this is why it is 

dies. It just rolls back or aborts which is the same as abort so; that means, it is dies and 

this is why this is called a wait die scheme, so this is the thing. 

And the younger ones as you can see can die many, many times, because what happens 

is that when a transaction rolls back or dies or aborts, whatever is the terminology, it 

restarts with a new timestamp. So, when a young one restarts, it restarts with of course, a 

younger timestamps, so the chance that if will die again is more. So, it can just keep on 

dying again and again and this is called non pre emptive, because nobody removes any 

other transaction. 

So, the old transaction simply waits for the young one to finish and the young ones 

simply dies. So, nobody pre empts another transaction, so nobody hurriedly removes 

another transaction, so that is why this is called a wait die transaction. 



(Refer Slide Time: 04:59) 

 

So, the other thing in this is the wound wait scheme, this is pre emptive and again we 

will see what does pre emptive mean later. But, let us see what happens is that the older 

transactions kill newer ones, so this is interesting, so kill young transactions. Now, what 

does this mean? So; that means, that suppose there is a young transaction T 1 which is 

holding the data item x and an old transaction T 2 wants the data item x. So, at that point 

since the old transaction has come, the young is holding to it, the young is made to 

release the lock and the young is essentially it is, it dies. 

So, the young one dies and the old one essentially now gets the lock and continues with 

this. So, the young one is made to die, so that is why it is the older transactions kill 

young ones that is the thing. And what happens to the younger ones? The younger ones 

simply waits, so an old transaction is holding the lock and the young transaction comes, 

it simply waits. So, the younger one is simply waiting, so in the terminology the old one 

is set to wound the young one. So, it stabs the young one, it kills the young one whatever 

is the thing that is why it calls and the younger one dies. So, this is it wounds it, so that is 

why it is called a wound wait protocol. 

Now, this is pre emptive. Why is this pre emptive? Because, when an older one comes 

and it sees, it wants the lock which is held by young one, it pre empts the young one, it 

forcibly aborts the young one, it forcibly removes the lock from the, it forcibly makes the 

younger one, unlock it. So, it removes the named data item whatever the data item from 



the young one, it makes it, release it and it preemptively grabs the data item, even though 

the old ones holding it, so that is why this is a pre emptive data item. Now, transactions 

in this case what may happen is that, transactions may be started with the same 

timestamp. 

(Refer Slide Time: 07:22) 

 

So, transactions are restarted, it may be restarted with a younger timestamp, with a new 

timestamp or restarted with the same timestamp, so this is the other thing. Now, one can 

show that there is no starvation in this schemes, there is no starvation. Why is that? If the 

transactions are started with the same timestamp, why is that, is that at some pointing 

time, if the starvation… When the starvation happens is that, remember that when a 

transaction wants a data item and it cannot gets it, the next time it wants it is, by the time 

some other transactions have got it and so on and so forth. 

Now, if a transaction is restarted and it is restarted with the same data item, at some 

pointing time this transaction must be the oldest one that is around. Because, every new 

one, every other one has got it and so on and so forth, every other older transaction has 

finished and this is what is being starved. So, then it will be getting it, it will wound all 

the young ones and it will getting it, so this there will be no starvation. 

On the other hand, the same thing what the happens for the wait die is that, at some 

pointing time this transaction must be the oldest one. So, it must simply get it, because it 

will wait for the young ones to finish and another transaction which is also wants it will 



not be getting it, because it is younger than this, so this is the older one. So, and the end 

it will get it, so there is no starvation and as we have already the understood that there 

will be no deadlocks. So, this is free from starvation and this is free from deadlocks. 

Now, among these two things which is the better one as it happens that in the wait die 

transaction the young ones keeps on dying. Because, every time it is restarted there is 

some old one that is being done. So, young one reaches to this place, but the old one is 

already holding the lock and it dies it restarts and it reaches the same place and it dies. 

So, it keeps on happening, so it dies many, many times. 

(Refer Slide Time: 09:29) 

 

So, in that case essentially the wound wait has more roll backs. So, wound wait protocol, 

the wound wait scheme rather has more roll backs than the wait die scheme. So, among 

the two things the wait die is preferred. So, between the two schemes the wait die and 

wound wait the question is which one is more preferable. Now, what happens in the wait 

die is that young transactions may die many times, now what does it happen is that when 

a young transaction reaches to a point where it wants a lock it looks for an old it sees that 

there is an old transaction that is holding to it, so it dies. 

And it is restarted by the time it restarts reaches the same point it may be happening that 

the old transaction is again holding it, so it again dies. But, the chances of that the old 

transaction finishing is larger that is in the wait die in the wound wait what happens is 

that the wound wait, the older transactions kill the younger ones. So, if a old transaction 



some very, very old transaction that was supposed to happen much earlier comes it will 

kill all the young ones. 

So, even though the younger transactions die many more times in an wait die and older 

transaction may kill more transactions in a wound wait. So, in general wound wait has 

more roll backs. So, what is preferred is the wait die scheme? So, this is about the 

deadlock prevention we can also talk something about the deadlock recovery. 

(Refer Slide Time: 11:00) 

 

So, deadlock prevention schemes will never go into deadlock, so there is no question of 

recovery. But, this locking schemes they do not they are not deadlock prevention 

schemes, so they may go into deadlock. Now, the question is once a system goes into 

deadlock it must be detected and it must be recovered. So, the system must not keep on 

waiting of course, it must be the deadlock must be broken. So, how is the way to be 

done? 

So, the first thing to recover from a deadlock is to identify the deadlock. So, that is called 

the deadlock detection. So, how is a deadlock detected? This is very similar to the to 

some concept that we read earlier anyway. So, the concept that it uses is something 

called a wait for graph, so this is a wait for graph and we in the conflict serializability we 

saw graph, this is kind of the same thing and what happens is that in this wait for graph 

suppose T i waits for T j that what does this mean, the T i waits for T j is that T j is 

holding a lock on an item that T i wants. 



So, then in the graph... So, the graph the nodes are transactions and the ages are 

according to this wait for things, so the ages are the waits for relationships. So, in the 

above case when T i waits for T j there will be a node T i then it will have a directed 

edge to node T j. Now, what happens in a deadlock is that T i waits for T j then T j waits 

for T k, then T k waits for something else and finally, that something else waits for T i 

that is why it is a deadlock. 

So, now, you can clearly see what is going to happen in this graph is that now T j waits 

for T k then T k waits for something else, then something else, something else that waits 

for T i. So, that is the… What does that mean is that, for this graph to say whether there 

is a deadlock or not, there must be a cycle in the graph. So, only when there is a cycle in 

the graph it can be detected that there is a deadlock. So, the how does one detect if there 

is a cycle in this directed graph that is the same as we did in earlier in the conflict 

serializability graph, etcetera. 

So, one can run a depth first algorithm to find out if there is a graph, if there is a cycle 

then there is a deadlock. Because, in that cycle all the transactions are waiting in a 

circular manner, if there is no cycle on the other hand then there is no deadlock. So, it is 

a, this thing. 


