
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 38 

Concurrency Control: Locks 

We will continue with the transactions, we have already seen what a transaction is, what 

a schedule is and some recovery control systems, etcetera. So, we will next move on to 

concurrency control protocols. So, concurrency control protocols are essentially that is 

what they decide, how to manage the concurrency between two or more transactions in a 

schedule. So, the logs, etcetera and when to give access of a particular data item to a 

transaction that is what we will be studying next. 

(Refer Slide Time: 00:42) 

 

So, this is about concurrency control protocols. So, one of the ways of ensuring 

concurrency is to the use of locks. We all know that locks are, what ways also use, 

operating systems also used to ensure concurrency and the databases have no exception, 

they also use lock. So, locks are what that access the control. So, this control the access 

to a data item and the requests of lock are essentially merge to, there is a module in the 

database, which is called the concurrency control manager. 

So, this is the module in the database that handles this concurrency control protocols and 

handles the locks, etcetera. So, all requests for locks are made to this concurrency control 



manager. The concurrency control manager decides whether to grant the lock or deny the 

lock, if the grant, if the lock is granted then the transaction essentially occurs that lock 

and go ahead with that operation on the data item. If it denies, it can actually wait, the 

transaction generally just waits till it is granted later by the concurrency control manager 

and then it goes away. 

One very important thing is that the operation of locking and data item by a transaction 

as well as operation of unlocking the data item by a transaction, these two operations 

must themselves be atomic. So, it cannot happen that two transactions are trying to lock a 

particular data item. So, only one of them will get the lock or it may happen that none of 

them will get, that is the separate issue. But, so these are by itself atomic operations, the 

locking and unlocking, just the operations may themselves the atomic. 

So, either a transaction completely gets a lock or it does not get it. So, two transactions 

cannot get the same lock, even if they I mean request almost in the same time, they will 

some ways of ensuring that only at most one of the transactions get the lock. 

(Refer Slide Time: 02:53) 

 

So, then a data item may be locked, so a data item is what it is locked or unlocked, a data 

item may be locked in essentially two nodes, the first one is called an exclusive lock. So, 

this is denoted, so exclusive lock, this is denoted by an X. So, essentially this means that 

data item can be both written as well as read. So, if a transaction obtains an exclusive 

lock on a data item, then the transaction can both write and read to the data item. The 



other type of lock is the shared lock which is denoted by S, which means the transaction 

if obtain the shared lock on the data item, it can only read. 

So, write data item cannot be written, so it can be only read by the transaction. So, these 

are the two important things the exclusive locks and the shared lock and then there is a 

lock compatibility matrix. So, there is a lock compatibility matrix that essentially defines 

the compatibility between the different kinds of locks. So, which means that suppose 

there are two transactions that are also, all locking etcetera we will be assuming on the 

same data item; otherwise, there is no conflicts and there is no issue. 

But, suppose there are two transactions, the row denotes one transaction and the columns 

denotes another transaction. So, the point is if there is some transaction which has got 

shared lock and the other transaction wants the shared lock. Can we get it? Yes, it can get 

it. Suppose, one transaction has got a shared lock and the other wants an exclusive lock, 

can it get it, no it cannot. So, similarly if one has got the exclusive lock and the other 

wants the shared lock, it cannot and of course, if one has got the exclusive lock, the other 

cannot get the exclusive lock. 

Now, this is should be very intuitive as to what is happening, this is essentially to get 

against the conflicts with write. So, if there are two transactions that the both of them 

want to writes to the same thing, which is both of them are wanting the x lock, that 

cannot break it. Even if one of them wants read and the other is writing, the other 

transaction will not be able to get the x the shared lock, because other has got the 

exclusive lock. 

Now, only case where both of the transactions can get is both of them wants to read the 

data item, in which case there is no conflict. So, both of them can just obtain a shared 

lock which is why the S to S matrix, the entry for S to S is S and they can just go ahead 

with doing that. So, the read, read there is no conflict, this lock compatibility matrix does 

just it codes the conflict that we have already studied. So, that is the thing and as I said 

earlier, that if a lock cannot be granted in this case, it will be just wait for that. So, using 

all these locks, we will next move on to the locking protocols. 



(Refer Slide Time: 05:43) 

 

So, the locking protocol is essentially how the transactions must be granted locks, so that 

the concurrency can be maintained and there is no issue with the correctness. So, the 

correctness of the schedules be also be maintained. So, we have seen that the schedule 

we have already seen that the schedule specifies all the read, write and maybe the abort 

and commit operations as well. In a locking protocol, a schedule must also mention 

explicitly, all the locking and unlocking operations. So, it must say the transaction one 

wants a lock, etcetera and so on and so forth. 

Now, essentially we cannot guarantee whether the locking or unlocking has been done, 

because that is done by the concurrency control manager. So, what it essentially tries to 

do is to request a lock and then unlock that is it. So, now, that is denoted by in the 

following manner, so when a transaction... So, this is l x of 1 of a transaction, that this 

notation means that transaction T 1 wants, if transaction T 1 requests an x lock on data 

item a, so that is the meaning of this, so that is why it is called a lock x. 

So, l stands for locking, x means exclusive lock by transaction one on data item s. So, 

that is the notation l x 1 of a, so if transaction T 1 request x lock on a. Now, when you 

say u x 1 of a, essentially it means that transaction T 1 releases the x lock on a. So, these 

are the things, it either requests or release. Then, similarly there is this l s 1 of a, which 

means transaction 1 requests a shared lock, S lock on the data item a and then, there is an 

u s of 1 which is transaction 1 releases the S lock on a. 



So, these are the four types of operations that will be added to the schedules in addition 

with the read, write and abort, committed, etcetera to specify the locking and unlocking 

of this operations. So, for example schedule can be simply specified in the following 

manner. 

(Refer Slide Time: 08:04) 

 

Let us just go over briefly what does this mean. So, essentially it means that first the 

transaction one requests are the exclusive lock on a, once it gets it otherwise it must read 

once in gets it reads a and then write to a, then transaction 2 request the shared lock on b 

which will be granted, if there are assuming there are no other transaction since, because 

these are in the different data item and this is a exclusive lock and this is just shared lock 

on b which is got nothing to either that is granted then it reads, because it has got a 

shared lock it can only read it cannot write. 

So, it only read which is fine and then this transaction one releases the exclusive lock and 

transaction 2 releases the shared lock and that is the end of the schedule. So, that is how 

are schedule will be specified in this. Now, let us see an example of what needs to be, so 

this is all fine as a schedule. Now, let us consider another schedule and see what may 

happen which such a schedule, now note very importantly what we are doing here is that 

the following. 

So, transaction 1 once an exclusive lock on a assuming there are no other transactions 

and assuming there is nothing else going on, this lock will be granted, because there is no 



conflict nothing. So, transaction one gets that lock only then it reads and then writes, 

transaction 2 request the shared lock on b again that will be granted, because there is no 

problem then it reads. Now, what happens is that transaction 2 once an exclusive lock on 

a and transaction 1 once an exclusive lock on b. 

Now, the important thing comes is that transaction 1 is already holding and exclusive 

lock on a. So, unless transaction 1 releases it or unlocks it transaction 2 cannot get 

another exclusive log on a, because that is what it is not allowed by the lock 

compatibility metrics. So, it will not be getting, so it will keep on waiting, so transaction 

2 at this point will keep on waiting for the exclusive lock. On the other hand transaction 

1 once an exclusive lock on b, now transaction 2 holds the shared lock on b it has not 

released it. 

So, transaction 1 wants an exclusive lock again this is not going to be allowed and this 

will keep on waiting. So, now, essentially what is happening is here is very, very 

important. Transaction 2 keeps waiting for an exclusive lock on a which it is not going to 

get unless transaction 1 releases, transaction 1 on the other hand is waiting for a 

exclusive lock on b, which is again not going to be granted unless transaction 2 releases. 

Now, you see this is the classic dead lock situation, transaction 1 once a lock which it is 

not going to get and unless it is I mean and it is not releasing other locks and transaction 

2 once another lock which is again it is not going to get. So, it is not going to release 

other lock, so both the transactions are just waiting for locks and for the other transaction 

2 and none of them is going to release it, so it is the classic dead lock situation. 

So, the concurrency control protocols whatever this protocol in the schedule etcetera, the 

locking unlocking may resulting the dead lock I mean it is only says when to request for 

the lock it does not mean that the lock is got immediately, it only request for a lock and 

depending on the concurrency control manager it may or may not get it and it is 

especially something is that it can never violet the lock compatibility matrix. So, if there 

is another transaction that holds and exclusive lock, it cannot get another exclusive lock 

and shared lock on it. 

And if another transaction holds the shared lock, it cannot gets on exclusive lock that is 

the lock compatibility matrix. So, it may resulting dead locks, now otherwise what will 

happen is that there may be a violation of the correctness. So, the concurrency control 



manager will never sacrifices on the correctness it will not grant this lock. So, what may 

happen is that they maybe the situation of dead lock that is the one thing, the other thing 

is starvation a live lock that is another phenomenon that may also happen. 

So, what is essentially it is the phenomenon of starvation or live lock is that suppose 

there are many transactions and transaction 1 holds the lock on some item a. Now, both 

transaction 2 and transaction 3 once it as it happens that once transaction 1 releases it, 

transaction 3 crabs the lock, so transaction 2 does in it. Now, before transaction 3 

releases it, transaction 4 again wants the same lock on the same data item. 

So, once transaction 3 releases transaction 4 crabs it and transaction 2 again does not get 

it and then again before transaction 4 releases, transaction 5 wants it, so transaction again 

does not get it. So, essentially there is no dead lock in the system, in the sense that the 

transactions are proceeding some of the transactions are at least proceeding is not that all 

the system is altered, but transaction 2 is starve, it is starve. 

Why it is called starvation? Because, it is not getting the lock that it once some other 

transactions are getting it. So, that is the phenomenon of starvation and live lock and that 

can also happen if this schedule is the just requesting for a locks and releasing it that can 

also happen. So, that is the point of schedule, so then what it is being done is that now 

what we are going to next study is this, what is called the locking protocol. 

So, essentially the locking protocol will try to specify how a transaction should request 

for locks and how it should release the locks, such that the correctness is not violated. So, 

that is the locking protocol that we are going to study next. 


