
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 34 

Schedules: Conflict Serializability 

(Refer Slide Time: 00:09) 

 

Our conflict so an operation, so an instruction I of transaction T i is set to conflict with 

another instruction I j of another transaction T j. If the following thing happens is that, 

they both access the same data item, this is very, very important, same data item and at 

least one of them is a write operation. So, now, one can intuitively see, why are they set 

to be conflicting, if you remember, there are this r a w, read after write, then write after 

write and write after read conflict. 

Now, what is the problem, why are they set to be conflicting, this instruction I i and 

instruction I j of two different transactions, there must be of different transactions, 

number 1. Then, there must be accessing the same data item and one of them must be 

right. Now, what is why is this conflict is very simply the following thing, either suppose 

I i should have taken place before I j. 

Now, they are conflicting, because in another schedule which is equivalent, this order of 

I i and I j must be preserved, it cannot happen that in the another schedule, I j is before I i 

and then, it is not equivalent. Why it is not equivalent? Because, you see that this read 



write conflicts write, write or write read conflict will happen. So, that is why, they have 

set to be conflicting. 

This is the essentially the definition of why they are set to be conflicting. So, intuitively 

these are conflict is this conflict, this enforces a logical temporal order on this 

instruction. This is the logical temporal order; they cannot be violated; that logical 

temporal order cannot be violated. And now, that is one thing, now on the other hand, the 

other side of it is that, if there are two instructions, which do not conflict. 

Then, they can on inter change and they can be placed anyone before any other one and 

then, that is not a problem. So, that is the other side of it and that is what is we are going 

to study in much more detail. 

(Refer Slide Time: 02:49) 

 

So, conflict serializability, so this is the conflict and we have studied serializability. So, 

the next thing what we will do is we will study, what is called the conflict serializability. 

So, first of all a schedule is conflict equivalent is called conflict equivalent to another 

schedule is dashed, if it can be transformed to S dash by a series of non-conflicting 

swaps of instructions. 

So, non-conflicting swaps of instructions. So, what does it mean? So, suppose either 

schedule S and then, there are some instructions we need of course and then, let us pick 

any two instructions within this. And if that do not conflict and they cannot be inter 



change. So, let us inter change it and let us keep on doing this and suppose of by the 

process of this, one gets to S dashed from it is S. 

Then, S and S dashed are conflict equivalent, because what we are essentially done is 

that, they have ensured that if two instructions do not conflict, they have been swap. So, 

on the other hand which also means that, if two instructions are conflict, their logical 

order has been maintained, so these two schedules are equivalent in the sense of the 

conflicting instructions, the conflicting instructions maintain the same order, so that is 

why, they are called conflict equivalent. 

So, that is the definition of conflict equivalent. Now, this is the first definition, now S is 

set to be conflict serializable, this is conflict equivalent, conflict serializable. This is the 

definition again, if S is conflict equivalent to some serial schedule, so once more S is 

conflict serialable, it is given to some serial schedule. 

So, it does not need to be conflict equivalent to all the serial schedule, but they must exist 

at least one serial schedule that, if is conflict equivalent to and then, it is called conflict 

serializable; that is the definition of conflict serializability. Now, why are we studying it, 

because if S, if a schedule S is a conflict serializable that is means that, this it is 

equivalent some serial schedule. 

That means, it will preserve the database consistency, because we know that if the 

transactions are, if the transactions take place one after another serially, then the preserve 

the database consistency. Because, each transaction by itself preserve the database 

consistency, so if transaction T 1 happens, then it preserve the database consistency and 

then, T 2 happens, then it is also preserve the transaction, then it also preserve the 

database consistency. 

So, if there is an another schedule, which even though is interlay T 1 and T 2 is conflict 

equivalent to it, then it also preserves the database consistency. 



(Refer Slide Time: 06:17) 

 

So, now let us see an example, so suppose S is the following, so we will is the same 

notation and we will even wrote the semicolon. So, the first question is this conflict 

serializable, so that is what we will trying to answered. So, that means, to say the 

whether this is conflict serializable or not, it must be equivalent to either. So, there only 

two transaction T 1 and T 2, so it must conflict equivalent to either T 1, T 2, or to T 2, T 

1. 

Now, let us see, whether it is conflict equivalent to T 1 or T 2. So, first of all T 1 or T 2 

is the schedule. So, what is the T 1, T 2, you will write down all the instructions of T 1 

first in the order that they appear that cannot be violated, so r 1 b, then w 1 b and then, all 

the instructions of T 2. Now, we will see that, if we can arrive at this from S through 

series of non-conflicting swaps. 

So, now, what is the first thing? So, first thing is that, let us you have to do it. So, this is 

fine, there is no problem with this to, similarly these two have no problem, because they 

have to been starting and they have to been ending So, now what has been swapped is 

essentially and consider that r to A and w r 1, b has been swapped, because this r 1 b has 

come here and r 2 a has come here. 

So, are these two instructions non-conflicting, yes, because they do not operate on this 

same data item, very simply, so these are non-conflicting and these swap is fine. And 



how about this 2, then this two have also been swapped w 2, a has been swapped with w 

1 b, because w 1 b is coming here and t 2 a is coming here. Are these two non-conflicting 

again it is yes, because these two separate data item. 

So, that is means that S and T 1 and T 2 are equivalent; that means S is conflict 

serializable, so the answer to this is S is conflict serializable. So, there is no problem with 

this as for as database consistency is concerned. Now, known that we only need to test 

with T 1 and T 2 and not T 2 and T 1, because, it has to be conflict equivalent to one of 

them that is it. 

So, since it is already processed in the first case it is fine, it need not be check with T 2 

and T 1. If this one is not equivalent to T 1 and T 2, then it need to checked with T 2 and 

T 1, only when T 1 and T 2 did not pass that is the thing. 

(Refer Slide Time: 09:32) 

 

Now, let us take another example, which is the following, this is simply r 1 a w 2 a and w 

1 a. This is a very short schedule and let us see, whether this is equivalent. So, what is T 

1and T 2 is r 1 a, w 1 a, w 2 a. Now, let us test whether S is equivalent T 1and T 2, this is 

fine, but these two has been swap. So, these two these as been swapped is this a non-

conflicting swap, can we do that, let us test it, they operate on the same data item and one 

of them the right. 



So, that means, these two conflict, these two instructions conflict, so this swap is not a 

good swap so; that means, this is not equivalent to T 1 and T 2. But, we still cannot 

conclude anything about S; we need to test it with T 2 and T 1 as well. So, what is T2 

and T 1, T 1 is simply w 2 a, then r 1 a and then w 1 a, let us see, whether this is 

equivalent to S. 

So, once more w 1 aits a last operation, so nothing to worried about, but r 1 a and w 2 a 

has been swap. So, let us see if that swap can be happening now r 1e a and w 1 a are on 

the same data item and one of them is a right. So, this also conflicts. So, this is not a non-

conflicting swap. So, this is also not equivalent. So, S is neither equivalent T 1and T 2 

nor it is equivalent T 2 and T 1; that means, it is not conflict serializable. 

So; that means, S will not preserve the database consistency in some manner. So, in the 

sense of conflict serializability, so S is not conflict serializable that is the concept of 

conflict serializability. 


