
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 32 

Recovery Systems: Check pointing and Shadow Paging 

Now, one problem that happens is that. 

(Refer Slide Time: 00:11) 

 

So, the logs can becomes very large, so there is very large logs, because every all the 

transaction that we written in logs etcetera, etcetera, etcetera and suddenly one 

transaction has finishes. Now, it does not make sense to go over all the logs for some 

very old transactions, but to maintain the correctness there is to be way of saying that if 

the log is written for a particular transaction, all the writes in the transaction have 

actually gone to the database, the database has actually are seeing the effect of this, so 

why is it. 

Now, just to highlight my point, what is being done is that the following, so there is the 

database which has contained the actual values of this data items and then there is a 

temporary copy of the database. So, all the writes are temporarily changed in this, there 

is a temporary copy and the log records only the log, it has an entry, the log it only saved 

if there is change here. Now, that does not mean that this is actually propagated to the 



database and does been done and this the stable storage. So, this part is the stable storage, 

so this will never be lost. 

So, the question is if there is many, many, many, many, log entries then there are many, 

many, many, many changes in the temporary thing, but it is not sure which temporary 

things that gone to the database, that is the well idea. So, the logs when go very, very 

long and searching in the logs and finding on which transactions have started, but not 

committed which has all those things become very much time consuming. Now, to 

prevent all of that, an idea is used which is called a check pointing; I am sure many of 

you have heared this idea of check pointing. 

Check pointing essentially is trying to make sure that whenever a check point is being 

taken on the log, everything after the check point is correct. Now, correct meaning the 

following thing is that, so there is a very large log record and a check point is taken. 

Now, this means that everything that is on the log is being put to this stable storage. So, 

the log after that point is being put to the stable storage, more importantly all the pending 

writes up to the check point, all the pending writes are also fleshed to the database. 

So; that means, if I say there is an entry which says check point in the log, so if check 

point is being done, so if there is the write entry for some transactions before the check 

point, this effect as actually go on to the database, this is make sure. How it is been make 

sure? It is being actually forced to the database, so before the check point is being done, 

it is actually force in the database, the log etcetera. The log is also maintain in the stable 

storage, the log record also goes, the log is also return on the stable storage and all the 

write records in the log has gone to the database, it is make sure before the check point 

entry is being made. 

Now, here is the point, why is it that a check point entry will now help is that, now if the 

system crashes all that the log needs to do is to find the last check point, it is sure that 

everything below before that is correct. So, it needs to worry only after of things after the 

check point. So, even in the log is very large, everything up to this larger part of this 

thing, where the check point has been taken is correct, so it does not needs to bother 

about it, so that is the whole point and just to take it a little bit further. 

So, suppose there is the transaction commit T 0 after which there is a check point is 

being return. So; that means,... So, that fact that there is check point meaning that all the 



write operations for this below this has been correctly return that means all the 

operations of T 0 have been correctly return. So, T 0 does not need to be bothered about 

any more, this is all done just, because there is a check point entry. So, T 0 is nothing is 

to be done, so no redoing needs to be done for T 0 that is fine. 

(Refer Slide Time: 04:19) 

 

But, there may be other problem in the sense that something there may be a check point 

entry and then after some point in time, there is a commit to some transaction say T i. So, 

now, what it is being guaranteed is that every write up to check point is being done. But, 

there may be write entries after the check point and before the commit event has been 

done. So, T i is not guaranteed that all the entries, all the writes of T i is being done 

correctly. So, T i must be redone this cannot be avoided, so T i must be redone that is the 

thing. 

And then, anything suppose there is another thing where there is a start of T j and of 

course, there is no, the start of T j may be here, the start of T j may be here. And, but 

there is no commit entry of T j that must be undone. Because, again if the check point 

only guarantees that everything has been retained correctly, but. So, there may be some 

write operation before the check point and then the T j may about here. 

So, this instead of this thing this may be aborted here or it may not even write abort. So, 

T j must be undone, because the check point only guaranties that the writes are gone to 

there. So, it must be undone, so that is the thing, so check points... So, any transaction 



just to summarize any transaction that has committed before the check point entries 

being made, does not need to be bothered about it. Because, all it is writes of gone to 

correct, anything that has committed after the check points needs to be redone and any 

other transaction that has started, but does not no committed entry needs to be undone; 

even if it is before the check point that is the whole idea. 

(Refer Slide Time: 06:06) 

 

Now, just to make it even more efficient, this check point can be augmented by the list of 

transaction that are active at that point. So, instead of just writing check point, so it can 

also say there is a list of entries, so T L is the list of entries. So, T L essentially is a list, 

so it can say T 0 is active, T 2 is active, T 5 is active and so on and so forth. So, this is 

the list of the entries, so this list is written as part of the check point entry. Now, after 

that there are some more log entries etcetera and suppose there is a crash here. 

So, once the crash happens the log is read backwards up to the check point and the... So, 

this is read backward this is very importantly, this is read backwards up to the check 

point and the following thing is chunk, if there is a commit T i is found in this backward 

scan then there is a redo list, where T i is added to the redo list. Now, on this scanning 

backward if suppose on the other hand somebody founds the start of T j then there is an 

undo list, where T j is added. 

And suppose there is some other T k which is started earlier have, now known that 

scanning the log goes only up to the check point. However, what will happen is that 



since T k started before the check point and does not committed, T k must appear 

somewhere in this T l. So, this is must be the active in the list of active transactions, so T 

k must be appearing somewhere in that. So, T k is not found using this scanning, but T k 

is in the active list, then T k is also added to the undoing list. 

Of course, if T k has not been in the redo list; that means, T k there is no commit T k 

entry of this, if there is commit T k entry then T k would have been added to the redo list 

then nothing needs to be done. But, otherwise T k needs to be added to the undo list, so 

this is the way how the redo list and the undo list have been made and then we follow the 

same thing. So, undo's are fast done in a reverse order and then the redo's are being done 

in a forward order. 

So, the transactions in the undo list has first revert it back in the reverse order has the 

appear in the log and the transactions in the redo list as then done in the forward order as 

they appear in the log and one more thing only the operations after the check point. So, 

this is rate only up to the check point. So, only the operations after the check point needs 

to be either undone or redone that is it, because before that everything has been either 

undone or redone correctly. 

(Refer Slide Time: 09:14) 

 

And here is an example to see, suppose there is a start T 1 then there is write T 1, B, 2, 3 

there is a starting of T 2 and then T 1 commits then there is a write by transaction T 2 to 

another named item C the value 7 then there is a check point. Now, this check point will 



essentially say the list of active transaction which is only T 2 at this point. So, the check 

pointing the heavy operation, the check pointing is done lots of things needs to be 

checked. 

So, start T 3 then there is a write of T 3 for value A, 1, 9 then there is a commit of T 3 

then there is a start of T 4 and finally, there a write of T 4 for C, 7, 2. So, these are entire 

list of log record that will see, so what happens is that. So, the first thing to find out is 

that, so then there is a crash at this point. So, now if the first thing to find out is what is 

the list of undo and redo list, so the undo list is the following. 

So, undo list and the redo list, so the undo list is, it is scan backward there is a start 

before that is being noted. So, that is added to the undo list correct and then it goes to the 

check point and sees that there is an active transaction T 2, so that is also added to the 

undo list, because that is not in the redo list. So, the redo list if it commits and it finds 

commit T 3, so the redo list is at the list is only T 3. 

Now, note that T 1 is not appearing at all, because T 1 committed before the check point 

that is it. So, then the order of operations will be the undo list first and then the redo list. 

So, there are two things in the undo list how will be done it is based on the when it 

started etcetera. So, T 4 is first undone then T 2 is undone and finally, T 3 is undone. So, 

this is the order in which this things will be done and the order of operations will be the 

following. 

So, for T 4 the operation if the C is return back to the old value which is 7, it is return 

back to the old value and there is a only operations for T 4 for T 2 nothing appears yes. 

So, no operations is being done, even though it has return something back, because you 

see the point it goes only up to the check point and does the redoing and undoing of only 

those operations that appear up to the check point and for T 3 the redoing of this thing 

needs to be done. So, A is return the new value of 9, so that is the way this whole scheme 

which check pointing takes place, we will have too more small things to covered. 



(Refer Slide Time: 12:49) 

 

So, first thing is a very small issue of log records, so the logs are also retain to the stable 

storage etcetera. And so every time are database draw the write operation, read 

operations something is being return to the log. Now, the question is the log is maintain 

as a temporary list in the main memory and the log needs to be return to the database or 

not to the database, the log needs to be return back to the some stable storage. 

So, how many times will the log be return, so there is the concept of log record 

buffering, which means that not every time a log record is being done, the log is return 

back to the stable storage. A couple of records the buffered together and then this is the 

output to the stable storage. The reason is the same reason that we saw all those why the 

inter disk page is access together. So, all the log records that fit into one disk block is 

first filled up and then the disk block is return back to the disk on the stable storage that 

is the way. 

And the records are of course, first in the order in which they appear in the log. So, this 

is in the order of list appear in the log and then there is concept of force writing is used, 

force writing meaning everything that is return that needs to be return is forcefully return 

back to the disk. So, this is in the if you know this programming languages see etcetera 

this called as flash operations. So, flash means that it is surely gone to the stable storage, 

so that is the flash. 



So, this force writing of the log record is being used and even, so if there are some 

commit entry etcetera that is also flashed and all the log records. So, if there is the block 

of data that is return to the data base all the log records ((Refer Time: 14:36)) it must be 

done before. So, this log must be flashed before the actual, the writes are go on true, so 

that is the thing. So, the log records retain before the actual thing that is why this is 

sometimes called are write ahead logging. 

That means, before the logging before the actual write is done, the log is being retain 

ahead. So, this is the write ahead logging or this is sometimes known as the WAL rule, 

W A L, because it is the write ahead logging, so that is all the thing about this log. 

(Refer Slide Time: 15:23) 

 

Then there is one more type of data base recovery scheme that can be followed, which is 

called the shadow paging and although we talk about it very briefly last time, a little bit 

more details on this is as follows. So, the shadow paging is essentially there are two 

copies of the data base are maintained. Now, we will assume that there are two page 

tables in the OS type. So, essentially forgetting about page tables the details of it there 

are two copies of the data base are maintained and the database is broken up into disk 

blocks or pages. 

So, these pages the list of this pages are maintained and then there are two copies, the 

first one is the current page table, page mean that disk block and the other one is the 

shadow page table. So, there are the two copies are from maintained, the shadow page 



table is maintained on the disk, this is maintain on the disk and no changes at done to it. 

So, no changes are done on the shadow page table, so whenever something needs to be 

changed the corresponding page in the current page table is what is being changed. 

Now, so all the update etcetera goes to the current page table, now whenever the 

transaction commits all the changes that have been made to the current page table, all 

those things are flash to the disk. So, this is all flash to the disk, so what does flashing to 

the disk means, the flashing the disk means these are return to the corresponding pages in 

the shadow page table, which is on the disk. So, that is being flash to the shadow pages, 

the shadow page table actually modified only when there is the commit in a transaction 

commits, so that is the commit operation that is been done. 

And if this is followed then actually what can be shown is that there is no recovery is 

needed, if that is the simple scheme no recovery is needed. What it means to say no 

recovery is needed? Because, you see what happens is when a transaction fails what 

happens all the copies or all these things are in the current page table which is will be 

lost that is it there is no, the shadow page table context all the efforts of only the 

committed transactions. 

So; that means, nothing needs to be changed for the shadow page table and only the 

current page table is what is be changed. So, that is why this is also called a no undo 

slash no redo scheme, because nothing needs to be undone, nothing needs to be redone. 

However, at the end of all of these things the shadow page table is the new correct 

things. So, that is the thing, so this what is the this seems to be very useful, because no 

recovery needed, but there are some practical problems that happens with this first of all 

there are too many pages that needs to be copied. 

So, the efficient is not much the commit overwrite also may be to high, because lots of 

things may be needed to the shadow page table, whenever a transaction commits and the 

things is serial if really only happens for serial transactions. So, the transaction must 

come one after another, if the transactions have been inter list then this scheme may not 

fault. So, this only what is the serial transactions, the advantages of course, is that no 

recovery is needed. 

And so there are no logs, no override of writing the logs, etcetera, etcetera, etcetera, so 

logs are not readied. So, there is no override of writing the log, so that aims the topic on 



data base recovery management systems and we studied some couple of scheme when 

using logs and which check pointing etcetera and finally, the shadow paging, we will 

next covered the important issue of schedules. 


