
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture – 27 

Query Optimizarion: Heuristics and Sizes 

(Refer Slide Time: 00:10) 

 

Heuristics are implied not just in sort order and join tree, it has been used in many such 

cases. So, some of the Heuristics that the database engine performs to do better query 

optimization is the following is that, first thing, the one of the thing it does is that, 

selections are performed early. Why is that? Because, once the selection is done, the size 

of the relation is reduced considerably. 

And so, whatever operation that is done on the relation, it can be done in a faster manner; 

that is one thing. Projections are also, if it they can be done early, they are done early, 

again projections can be done early, because that reduces the number of attribute; that 

reduces the size of the relation in general and again, that can be beneficial later, again 

that is mostly beneficial later. 

Then, joins are generally done earlier than cross products, if there is a cross product 

versus a join, then join is generally done earlier. The reason is easy to understand, joins 

are essentially cross products and then, a selection. So, joins can early produce smaller 

relations than the cross products. This is one kind of thing, these are all kind of heuristics 



that do not depend on the semantics of the query, this is just using the equivalence rules 

under doing it. 

The optimizer can also use certain semantic optimizations. For example, suppose the 

query is find all employees, who on more than their manager. Now, a database engine 

can simply go ahead and try to solve this query by joining the employee salary table with 

the manager salary table, etcetera, etcetera. But, if a semantic knowledge is being build 

in, that the employee can never get salary more than her manager, then this query uses 

that semantic rule and simply returns a null set, simply returns an empty set. So, that is 

an example of a semantic optimization. So, it uses essentially the domain knowledge and 

the constraints that are built into the database directly and not this equivalence rules. 

(Refer Slide Time: 02:27) 

 

So, the query optimizer to do all of these things to choose which algorithm is better, 

etcetera, stores a lot of statistics about the relations, about the attributes, etcetera, 

etcetera. So, what are the statistics that is stored? So, for each relation r it stores the 

following statistics, so this is about relation r. First it stores the number of tuples, so 

number of tuples in r; that is being stored, then the number of blocks that r is required. 

So, this we have seen example, this is n r and this is b r; that it store, it also store 

something called a blocking factor. So, the blocking factor is essentially the number of 

tuples that fit in a block. So, this is the blocking factor, this is the derived statistics, one 

can say, this is n r by b r, but it stores it explicitly, because that helps in a certain things. 



And the size of a tuple, again the size of a tuple is essentially the block size divided by 

the blocking factor. So, that can be a, I can derive, but these are the statistics that the 

query optimizer maintains, this is for each relation. Now, for each attribute A of a 

relation, this is an attribute column, attribute A of relation r. Again, certain statistics are 

maintained, the first statistic is the number of distinct values. 

So, this is kind of an interesting statistic, this is essentially the size of your… If the 

projection on A is done on relation r, what is the size? This is the v r, this is denoted by v 

r of A. This is useful for many cases, while duplicate elimination and all those things, 

this can be useful. Then, the minimum across A and the minimum value and the 

maximum value and in some cases the standard deviation and mean, etcetera can also be 

stored. 

Then, genuinely the histogram of values is being maintained. So, how are the values for 

that attribute A are distributed? So, the histogram can be either equi-width or an equi- 

depth. So, in an equi-width histogram, the range of value that is put in one histogram is 

same and in an equi-depth, the number of values that it put in one histogram been from 

the next is same. 

(Refer Slide Time: 05:07) 

 

So, histogram are can be maintained, then for each index, for an index, say index I of a 

relation r, it also again maintains certain statistics and the statistics are of course, the 

number of level. So, this is when I say index I mean the B plus tree of course. So, this is 



the number of levels of the tree; that is the height of the tree and then, number of leaves; 

that is in that, there and some others, it says the order of the tree and the average 

branching factor and all those things. Again, this helps to decide, whether to use the 

index for hash, join and etcetera, etcetera. 

(Refer Slide Time: 05:48) 

 

So, after this, let us see how does the query optimizer estimates the size. So, what we are, 

the next topic that we are going to study is about estimating size of different operations, 

estimating size. So, for selections, let us first handle selections, so suppose the selection 

condition is sigma, the attribute value A is equal to, so particular value x on the relation 

r. 

Now, what is this? There are couple of ways of solving it. Suppose A is the super key of 

this relation r, if there is a case, then one knows that the size, the answer said size of this 

is going to be either 1 or 0. Because, if A is a key, if that value occurs, it occurs, then it is 

1, if it does not occur, it is 0. Otherwise, if it is not the key, then what is the answer, then 

the answer can be got from the previous things, this is roughly n r by v r by A. 

Why is that? Because, n r is the total number of tuples and v r is the number of distinct 

values and we are use the number of distinct values. So, roughly on an average for every 

value, this is n r by v r, if it exist, otherwise it is 0. So, this is for the equality selection. 

What is on an non-equality selection? Suppose it is a less than query, now once more, if 

x is less than the minimum value that is maintained, then this the answer to this is 0. 



And if again x is greater than the maximum value that is stored, then the answer is a 

entire relation, the size of the relation is the answer. Otherwise, this is estimated in a 

following manner, this is n r times x minus the minimum value that is stored and this is 

max minus v minimum value; that is stored. Note that, these are all rough major; this is 

not going to be exactly the equal, so this formula assumes that the values are distributed 

uniformly from the minimum value to the maximum value. 

So, wherever x occurs, the x minus minimum gives you roughly the percentage of tuples 

that are going to fall below x and then, if you multiply that with n r that gives the actual 

number of tuples; that is an estimate. Now, this estimate does not use the histogram 

actually, this is just uses the min and max x values and when the histograms are 

available, the equi-width or the equi-height histograms are available. 

Then, the estimates are going to be better, because what the query optimizer needs to do 

is to simply count the number of histogram means, which below it and the histogram 

mean that it over laps, it needs to estimated somehow using this formula. But, otherwise 

it gets an actual count of the histogram means that are below that are less than x. So, the 

next query is this A less than x, the previous one was exactly equal to x and this is a way 

of solving it is. 

If one can solve A less than x equal to x r and then, if when gets read of A equal to x and 

that solves the A less than x. So, that is the easy, the next that we will study is A greater 

than equal to x of r and this is can be again solved very easily. Note that what is the A 

greater than equal to x r is the compliment of A less than x r. So, one can use that 

estimate to solve it. 

So, this is simply n r minus sigma A less than r, the size for that and similarly, A greater 

than x r can be estimated in two ways. So, this is n r minus sigma A less than equal to x r 

and finally, there is only one thing left, which is sigma A not equal to x r and by this 

time, we have surely figure out how to solve this, this is essentially n r minus sigma A 

equal to x r. So, that completes the estimation of size of selections, simple selections on 

one attributes. 



(Refer Slide Time: 10:05) 

 

Next, how to do complex selections, so that is not on one attribute, but on multiple 

attributes; that is what I mean by complex selections. So, the selectivity, so there are 

multiple conditions. So, something is defined as for the condition theta, the selectivity is 

defined is that, how many tuples pass only that condition theta; that is called the 

selectivity of the condition theta. 

So, it is essentially the probability the tuple in r satisfies theta, now if so the way to 

estimate is that, if s number of tulpes passed the theta condition, then s by n r is the 

selectivity. So, selectivity essentially s by the total number of tuples which is s by n r. 

Now, if the condition is conjunction of these things, then using this selectivity, so the 

conjunction the condition let me write on a little more explicitly, the selection is on theta 

1, 2, some theta k, this is on the r. 

If the conditions are independence, so that means, theta 1, theta 2, etcetera independent 

of each other, then the estimate is very simply, so far theta s 1 is the selectivity, for theta 

2, s 2 is the selectivity so on and so forth, one can write down this selectivity conditions. 

So, the number of tuples that is selected for theta 1 conditions is your s 1 by n r and then, 

for s 2 and n r so on and so forth, this is s 2 by m r. 

This is the total selectivity of the consumption condition that when it is multiplied by n r 

gives the total number of tuples at are going to the selectivity. So, that is the, if these are 

independent, we are properly going to assume, this is an independent. Again, if the 



independent is violated, then this does not work out, but that is fine. The next one is 

disjunction, so the disjunction condition is essentially sigma theta 1 or theta 2 or up to 

theta k. 

And how can one solve this is a following manner. So, what is disjunction. So, what 

exactly is the theta 1 and theta k is that is that, when is the tuple selected on the theta 1 

and theta k is that, let us negate this condition, disjunction can be think of as the negation 

of conjunction. And then, negation of those are the theta 1 values, so our tuple is selected 

for this disjunction, if it is not selected under any of the negative conjunction. 

So, other way of saying that at tuple is not selected for this disjunction, if it is selected 

for the negation of those conjunction. So, using this strategy, one can write down the 

formula in the following manner is that, so n r minus s i by n r, this is the selectivity of 

the negation of the condition of theta 1 and so one can right down that and when we are 

again assuming the all theta 1 to theta k are in dependent. 

So, the negation of also in dependent this gives the on the selectivity of the negation of 

this conjunction that times in our gives the number of tuples, where the conjunction is 

not correct and one points needs to find the negation of that, because is the disjunction. 

This is n r minus this that gives the formula for the disjunction and if one goes ahead and 

tries to solve it for the next thing, which is negation the just a negation. 

So, the negation of the condition is simply, this is not theta of r; that is very easy and that 

we have already handle. Although, one can say this is the complex selection, but this is 

essentially as the n r minus the estimate for sigma theta of r, this we have already see. So, 

that is the estimating the size for selection. So, we have seen simple selection and we 

have seen complex selections. 



(Refer Slide Time: 14:10) 

 

Next we will estimate the size of joins. So, let us first start of with natural join you 

estimate the size is for natural joins. Now, the simplest case is size for cross product and 

you will come to natural in status. So, cross product, what is the size of cross product, it 

is simply n r time n i. So, we are assuming it is r and s are two relation. So, just as double 

join also the join with only two relation, it is a single join operation that we done. 

So, cross product is simply n r by n s. So, what is the join? So, if you do not worry join 

so for normal join is essentially just a selection of theta on cross product. So, essentially 

the estimate of the size of the these join is the estimate of theta on the cross product size. 

So, that is simply whatever is the estimate on this n r dot n s, so that is a way to do it, 

essentially just assuming the track. 

Now, for we come back to the case of natural joins, now the following is to going, if r 

intersection s is not there, then the size of this natural join is essentially just the size of 

the cross product itself. Now, if r intersection of s is a key for r, then each tuple of s will 

join at most one tuples of r. So, let us worry about the schemer’s of r and s and this is the 

schema of r schema of s. 

Suppose, is schema of r and s is the key for r. So, which means that at most one tuples of 

r will join with at most one tuples of s. So, the size of this can be at most number of 

tuples in s, so that is n s. On the other hand, if r intersection s is a foreign key in s that 

references r, then what happens is that this is exactly equal to be n s, because in a foreign 



key n s; that means, all of these s is, so all the values in s must one have a call is thing is 

r. 

So, all the tuples in must join and so all in a is a result, this is at most n s, this is less than 

equal to n s, because if it is not a foreign key it is not clear whether everything will sure 

everything s will have a finding tuples in r, r not. And otherwise general case is 

following, so every tuples in r suppose the tuples t r in r can join with suppose n s by v s 

by A. 

So, why is that, because tuple in r as a particular value of x in s estimate for the selection 

of x in a this n is v s by s every tuples in r can join with n is by v s by A. So, the total 

number of join tuples that can found is n r times n s by v s by A, this is if one thing for 

point of view of r. However, one thing if only point of v of s, then the same thing can be 

done and the estimate that one gets is in is times n r by v r by A. 

Now, the question is which one is better etcetera, etcetera. So, this is the two estimate 

generally that the find out that the lower size is a better estimate. So, out these two, the 

lower is the better estimate, this is the observed. And once more, this is the, if there is 

histograms, if one us the histograms then the estimate can be of course, improved. So, 

the histograms are used in both of these, both of these estimate can be improved. So, the 

actual estimate is also improved. So, this is the sizes of joins etcetera, now size of some 

other operations, we can of see, so suppose size of projection, this we have already seen 

the answer. 



(Refer Slide Time: 18:17) 

 

This is the number of distinct values that we have seen. So, this simply v r by A, then we 

can see the this estimate the size of aggregation is estimating size of aggregation, see 

suppose this is the aggregation function and on this… So, this is the function that is right, 

this is essentially again just the v r of A, why is that, because aggregation assumes 

particular attribute. So, which essentially means, it is a projection and that attributes. So, 

this aggregation function is projecting is this aggregation is being done by so each 

distinct value of A, which is this essentially saying that the number of v r by A; that is 

the number of distinct value is of a that has been maintained. 

Union of r and s or union s, the estimate is simply n r plus n s, this is of course, in upper 

bound and it can be less than that. similarly, intersection then we found out, so 

intersection of r, intersection s, the estimate is the minimum of n r and n s, again this is 

conservative estimate. The next one is set difference, which is r minus s, the estimate for 

this is simply n r, this is again upper bound, because is assuming that none of the tuples s 

is common, because so all n r may be return. 

Then, this all of these are essentially all of these are upper bounds fine. So, the next thing 

is comes is that left outer join. So, the estimate of left outer join is the following is that 

the, so the estimate of r left outer join with s is the size for r joined s and the it does not 

cover everything in r. So, this is the r to size of that is so all the tuples that are join in r 



cross s plus all that tuples that we not, because the worst case is that all tuples in r have 

been left out. 

Right outer join is similar and let me just write it down for the correctness. So, r joint 

with s is r join with s plus and s. The more interesting case is the full outer join of r and s 

is that size of r joined with s plus n r plus n s, because where the worst case is that r and s 

none of the can be join. So, again these are upper bound. So, that finishes the topic on 

quarry optimization, next we will move on to one very important topic about data bases, 

which are the data base transactions. 


