
Introduction to Programming in C 

Prof. Satyadev Nandakumar 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 47 

 

In this video, we will look at a few basic things about file handling in C. This is a vast 

topic in itself and we will see just the basics of this. So, let us begin by describing what 

are files. 

(Refer Slide Time: 00:15) 

 

Now, you would think that the most natural way to define what a file is, it is a set of 

bytes or a collection of bytes sitting in secondary storage, like may be your hard drive, 

may be your CD ROM drive or DVD drive or something, it is known as a secondary 

storage device. But, the actual description is that, any addressable part of the file system 

in an operating system is a file. Now, this includes extremely bizarre strange things. 

For example, slash dev slash null in Linux, this stands for nothing. So, if you write to 

slash dev slash null, it is like discarding the data. Similarly, slash dev slash urand, this is 

the random data device. If you read from here, you will get random data, slash dev slash 

audio is speakers. So, if you write some data into that, it will be heard on the speakers. 

And of course, plain old data files, for example, in a home directory you may have slash 

home slash don 2 slash input dot text. 



So, input dot text is just a collection of bytes. So, we will not bother with defining what a 

files is, but it is something that can be manipulated using the file system interface. So, 

you can open a file system interface to that file, you can read from that file, you can 

write into that file, you can close that file and so on. 

(Refer Slide Time: 01:53) 

 

Now, recall that in one of our earlier lectures, I said that there are three files works which 

are available by default to all c programs. So, these are standard input stdin. This is 

associated usually with a key board and this is where scanf, getchar, gets us kinds of 

functions get their input from, it has file descriptor 0. Similarly, standard output stdout is 

where printf, putchar, puts all these functions output the data to. This is usually visible 

on the terminal under screen, this has file descriptor 1. We also have a third file, which is 

known as standard error. This is the standard error console and which has file descriptor 

2. Usually, you can print error messages to stderr. We have not seen how to print error 

messages to stderr, so far we will see that in this speaking. 



(Refer Slide Time: 03:00) 

 

Now, how do you read input using standard file descriptors, but from sources other than 

key board and so on. So, for example if you are running a dot out and you want to take 

the input not from the key board, but, from an input file. You can say slash a dot out less 

than input file, this says that the input is coming from the file, input file. So, this is the 

input file as the source, instead of the key board. 

Similarly, if you want to redirect, so if you want to redirect the output to a particular 

output file, instead of the screen, you can says slash a dot out greater than out file. So, 

this will use the out file as the output instead of the terminal. And if you want to output 

something the error messages to error file, you can say slash a dot out 2 greater than 

error file, 2 stands for the standard error console. So, if you say redirect this to this file, 

you will say ok. 

The standard output should get the standard output messages and the standard error 

messages should go to err file. 



(Refer Slide Time: 04:17) 

 

So, Linux gives you some facilities to take input from other files using the standard input 

and the output. So, what you say is that, instead of the standard input, you can use this 

less than greater than arrows, in order to redirect input from some file or output to 

another file or error to another file. So, this is the facility that Linux gives you. But, 

consider the general situation, when you have a program, you want to read the input from 

multiple files and may be output to multiple files. 

So, this is the general situation, we just saw how to take input from one particular input 

file, how to output to another output file using the redirection operator, the less than and 

the greater than operation on Linux? So, the redirection mechanism is provided by the 

Linux shell and is not a part of the C program in language. So, is there a way to do it in C 

itself, rather than using the facilities of Linux. So, can we read from other files, other 

than the standard key board? Can we write into other files, other than writing on to the 

screen, standard output and so on. 



(Refer Slide Time: 05:30) 

 

So, we will look at the general scheme of file handling in C, all these functions that I am 

going to talk about are in stdaout dot h, itself. So, you do not need to include any more 

files. So, if you want to open the file for reading or writing etcetera, we need to first open 

the file. The three standard files stdout, stdin and stderr are available to the program. Any 

other file, you have to open the file. And the function to do that is fopen takes two 

arguments name and mode, we will see what these are soon and it returns something 

called a file pointer. 

A file pointer is a pointer to a structure and that structure contains a lot of information 

about the file. For example, where is it situated, the current position being read in the 

file. So, may be you are read 1000 bytes and you are about to read the 1000 and first 

byte. So, it has that information and various maintenance information, about the file. 

Now, in order to read or write into the file, you can use fscanf or fprintf. These are the 

analogs of scanf and printf, which allow you to right to an arbitrary files. 

It takes three arguments, at least two arguments, the first is the file pointer, where you 

want to write the file, where you want to read from the file and so on. And then, there is 

a format specified, just as a normal scanf or normal printf and then further arguments. 

So, the difference here is that, whereas scanf and printf started with a format specifies, 

we have an additional file pointer in the beginning. 



So, compare with a scanf and the printf, the first argument fp is missing. This is because, 

scanf just assumes that the file it has to read from is this standard input. And printf 

assumes that it has to print to the standard output and to close the file, you say fclosefp. 

And notice the way, the fscanf, fprintf and fclose work, they do not take the file name as 

input, only fopen takes the name of the file as input. 

Whatever fopen returns the file pointer, those are the arguments to fscanf, fprintf and 

fclose. This is because, once a file has been opened, all the information that fscanf, 

fprintf and fclose need are already in the structure pointer 2 by f p. 

(Refer Slide Time: 08:18) 

 

Now, let us write a very simple program, it takes the names of two files and what it does 

is, it first prints the contents of the first file and then prints the contents of the second file 

and these will be output to the standard output. What is the algorithm? It is very simple, 

you have to first read the file names, then open file 1, if open fails, we exit. Now, you 

print the contents of file 1 to stdout, after you have done, you close file 1. Then, you 

open file 2, check whether open has succeeded, if it has failed, we exit. Then, print the 

contents of file 2 to stdout close file 2 and that is it. 



(Refer Slide Time: 09:08) 

 

So, let us see what each of these steps in slightly more detail. How do you open the file? 

We open it using a standard call called fopen, fopen takes two arguments, the name and 

the mode as character pointers and returns a file point. The first argument name is the 

name of the file and the name of the file can be given in short form. Suppose, you are 

already in a directory, where that file is situated. Then, you can just give the name of the 

file. For example, input file or you can give the full path name of that file in the 

operating systems. 

So, for example input file may be in the directory slash home slash don. So, in that case 

you can give the name as slash home, slash don, slash input file. So, this will be the full 

path file, either of this is accepted. Now, the second argument is the mode, this is the 

way in which you want to open the file. So, what are the common modes? For example, 

if you give r, this will open the file in read only mode. This is, if you want to just read a 

file and not write to that file. 

There are also other situations, where the medium itself may not support writing. For 

example, if you have a CD ROM disk then you cannot write to that. So, it can only be 

opened in a read only mode, if you give w, this is the write mode. Now, the first write 

happens at the beginning of the file. So, if the file already exists, it will be over written. 

If a file does not exist, so this is the name of a new file that we support commonly is 

known as the append mode, we specify that by saying the mode is a. 



So, if you open the file for append mode, then instead of writing at the first location of 

the file, it will write at the end of the current file. So, if the file does not exist, then it will 

start from the first location. If the file exists, it will go to the end of the file and start 

writing from there. So, append does not overwrite the file. 

(Refer Slide Time: 11:38) 

 

We have seen the arguments of fopen. Now, let us look at what it returns? If successful 

fopen returns what is known as a file pointer. This is later used for fprintf, fscanf, fclose 

as I just mentioned. If unsuccessful, the file may be you try to open a nonexistence file 

for reading or you try to write to a file which cannot be return to. For example, it is a file 

sitting inside a CD ROM drive and you are not allowed to write to it. So, if you try to 

open the file in write mode, then you have a problem. 

So, for whatever reason if the file open does not succeed, then the fopen returns in null 

and it is always a good idea to check for these errors. So, just try opening a file and 

always check whether it has return the null. 



(Refer Slide Time: 12:33) 

 

So, let us write the program that we were discussing, which will take two input files and 

print one file and then print the other file. So, the program is fairly simple, we have a 

main function, we have two file pointers fp1 and fp2. And then, two file names 

filename1 and filename2, you get the filename1 from the input, you get filename2 from 

input using gets functions. Now, what we have to first do is, write the contents of the 

first file. 

So, try opening the file, so if fp1 equal to fopen filename1 r. Because, we just need to 

read from the file, we do not need to write into it. So, open it in r mode, if it is successful 

that is, if it is or rather if it has failed. So, if it has returned a null, then you just say printf 

that it has failed. And here is for the first time, we have seeing how to print to this 

standard error. So, stderr is any other file is similar to any other file, you can just say 

fprintf stderr. And then, opening file failed filename1. 

So, we try to open filename with filename1 as the name, but there was some error. So, 

you print that to the error terminal, which is stderr. Now, once you do that will call the 

function copy file fp1 to stdout. So, here is a function that we will write, which will copy 

from a source file to a destination file and what it takes are pointers to those files. 

Once you have done, you close the file 1 and then, you repeat the whole process, the 

exactly the same process for file 2. So, try to open it, if there is an error, you print the 

error message to stderr, then copy the file from fp2 to stdout and finally, close the file. 



Once you have done, you can return from main. So, now what is left is, what is this copy 

file function? 

(Refer Slide Time: 14:59) 

 

So, let us look at the copy file function. Now, there are two ways to start writing any 

function which takes files as arguments. One is you can take the file name as the 

argument itself and within the function, try to open the file. So, you will get a file pointer 

and you can start reading from the file using fscanf I am writing to the file using fprintf, 

this is possible. 

It is somewhat more convenient to say that I am assume that the files are already open 

and I am getting the file names as the point using file pointers. So, this avoids 

duplication of work, the main does not have to open the file. And then, every function 

has to open the file again and again. Instead, what you can just say that, I assume that the 

caller function has already is a file open and I will just take a file pointer as the 

argument. 

So, let us look at this function, it is a void function. So, it does not return anything, it just 

performs an action, it is name is copy file takes two arguments, fromfp which is a file 

pointer to after to the source file and tofp, which is file pointer to the designation file. 

And what is a function do? We have a character c and here is a function, we will see in a 

later video. But, right now it just checks whether fromfp has encountered enter file. 



So, feof just tells you whether you have done with the from file. So, if you are not done 

with a from file what you do is, you scan one character from the from file, so fscanf, 

fromfp, percentage c and c. So, this will read one character from the source file fromfp 

and read it into the variable c. What we have to do is, to print that to tofp. So, you say 

fprintf tofp percentage c comma c. So, this is exactly like scanf and printf, but taking one 

extra argument. 

So, in the case of scanf you just says, what is the source file that is the file pointer 

argument. In the case of fprintf, you have to take the designation file which is tofb, that 

is the extra argument in that expression. 


