
Introduction to Programming in C 

Prof. Satyadev Nandakumar 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 43 

 

In this video will look at multi-dimensional arrays. 

(Refer Slide Time: 00:03) 

 

In particular, let us look at two dimensional arrays. Because, that will give you an idea 

how multi-dimensional arrays work. Initially, let us look at them as arrays and in a 

subsequent video will look at the connection between multi-dimensional arrays and 

pointers. 



(Refer Slide Time: 00:22) 

 

So, multidimensional arrays can be defined in the similar to the following, you can say 

double mat 5, 6 or int mat 5, 6 or float mat 5, 6, this is similar to the mathematical 

notation of multidimensional arrays are matrixes. So, let us look at the first example, we 

have that the definition states that mat is a 5 by 6 array of double entries. So, this means 

that mat has 5 rows, each row contains 6 entries and all the entries are of type double. 

Double is what is known as double precision floating point numbers. 

And if you are doing a lot of floating point computations, then instead of float you could 

use double because, you might need a lot of precision in your computation. So, the 

matrix 2D array might look like this, this looks like a mathematical matrix of size 5 by 6. 

So, it has 5 rows, rows 0 through row 4 and each row has 6 columns, column 0 through 

column 5. 



(Refer Slide Time: 01:46) 

 

Now, the i j th member of matrix is accessed as mat i j this is slightly different from the 

mathematical notation. In mathematical notation you will write matrix and then a square 

bracket and then you will write i comma j followed by close bracket. So, this is different 

in c, you would write the indices separately in their own square brackets. Now, the row 

and the column numbering begin at 0, this is similar to one dimensional arrays we saw 

that one dimensional arrays start with index 0. 

Let us look at a function which prints the input matrix. So, I have a function it returns 

void. So, it does not return anything it just performs an action, which is to print a matrix. 

Now, the function is called print matrix, it takes a double matrix mat of size 5 by 6, 5 

rows 6 columns each. I first declare i and j, i is suppose to iterate over the rows and j is 

suppose to iterate over the columns. Now, how do you iterate over the whole matrix. 

Well, first you would take each row i. So, you need an i outer loop for that based on the 

variable i. I will go from 0 to 4, so the for loop goes from 0 until you hit 5. Now, for each 

row what do we have to do, we have to take the elements in the column. Now, the 

columns are numbered 0 through 5. So, for each i th through we have to take column 0, 

column 1, column 2, column 3, column 4 and column 5. So, all these entries and then 

you have to print that entry. 

We have just mention that the i j th element in the matrix is accessed as math i j, i in 

square bracket and j in square bracket. Therefore, you will say printf percentage f 



followed by space mat i j. So, this will take the entry in the i th row, j th column. One 

more thing that is worth noting is that, even though you had a double matrix, you still 

print it as percentage f as though you were printing a float and the language will take 

care of printing the double precision. 

So, here is the loop to print the columns of a row. Once you are finished with the row, 

you would a print a new line. Because, then you can start at the beginning of the next 

line for the next row, so here is the loop. So, what the loop does is prints the i th row, row 

starting from 0 and ending in 4 and for each row print each of the 6 columns 0 through 5. 

Now, at the end of the each row you would print a new line. So, here is the code to print 

a matrix, the lesson here is how to access the i j th element. You would access it as 

matrix square bracket i square bracket j. 

Now, the dual operation of printing is of course, reading in the input from the user, we 

have done it using scanf. So, let us try to use scanf to read in elements which are input by 

the user. 

(Refer Slide Time: 05:29) 

 

Now, one of the things with the scanf is that the argument to which variable we have to 

read it in, we usually give and x, if you have to read it into a particular variable x when 

we will say scanfs whatever format it is and then say and x, which says the address of x. 

Similarly, I could guess that in order to read to the i j th element of a matrix, I would 

need and mat i j and that is actually correct, you do not need a parentheses here to right. 



So, you do not need to right and of mat i j with mat i j in square bracket. Because, the 

address operator has lower precedence then the array indexing operator. So, when you 

see an expression like this, the parentheses will be in such a way that mat i j is evaluated 

first and then the address is taken. Because, it is a lower precedence operator. So, this is 

similar to a one dimensional array that you have already seen, you would have read it 

using and of a i. So, we have the two dimensional analog of that. 

(Refer Slide Time: 06:44) 

 

So, let us look at the code and the code looks exactly as the print routine, except that we 

are now scanning a number. So, you have an outer loop which will go through all the 

rows and then in inner loop which will go through the columns of the i th row and how 

do you scan. You says scanf percentage f and mat i j. So, remember if it was just a double 

variable instead of an array, you would have just said and f the variable name. Similarly, 

we have and f mat i, j. 

Again, note that even though we have a double array, you read it in exactly as though it 

were a float array, using percentage f format. So, read in the i th row and i th row goes 

from 0 through 4 and for each row read the j th column, column goes from 0 to 5. Now, 

the way this scanf works, the scanf with percentage f option will skip over the white 

space and it will skip over any white space. 

So, in effect what it means is that, if I had to enter a matrix of size 5 by 6, I can enter it in 

multiple ways, I can enter it in the most natural way which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 



and so on. So, 5 rows each row has is entered in a line and each line has 6 entries, so let 

us call this may be 10 and 11. So, each row has 6 entries and there are 5 rows, this is a 

most natural way to enter it. 

But, as for as scanf is concerned any white space will be skip. So, instead I could just 

enter one number in one line. So, I could enter it one number per line and it put be read 

exactly in the same manner, that is a property of scanf. 

(Refer Slide Time: 08:53) 

 

So, it really does not matter whether the entire input is given in 5 rows of 6 doubles or 

just 30 doubles each number in a single row by itself. So, that is you both of them are 

fine. We have seen how to print an array. We have seen how to read elements into an 

array. Now, let see how to initialize a multi-dimensional array. 



(Refer Slide Time: 09:17) 

 

So, we want to initialize let us a 4 by 3 array in the following way, it should be 1, 2, 3, 4, 

5, 6, 7, 8, 9 and 0, 1, 2, let say this is the array that I want to enter. Now, we have seen 

initialization of one dimensional arrays, if I let say int b 3 how did we initialized, we 

could initialized it us 0, 1, 2. So, we summary of this is that, it is a list of numbers 

separated by commas and the list is enclosed in curly braces, this is the case for a one 

dimensional array. 

So, it is natural to generalized the notation in the following way, if I have to initialize a 4 

by 3 array, I can just say curly brace. And so here is a list of elements and each element 

is basically a row. So, what is a number here will be a row? So, it will be a list of rows 

and each row being an somewhat like an array, each row will be given by a list. So, the 

array initialization on the right hand side is exactly the array that is shown here. So, it 

will come out to 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2. So, the notation is consistent and it is a 

generalization of the one dimensional array notation. 



(Refer Slide Time: 10:51) 

 

So, there are some initialization rules, similar to what we are seen for one dimensional 

arrays, values are given row wise. The row number 0 is the first entry, number of 

columns needs to be specified, we need to know how many columns there are? Now, 

value of each row is enclosed in curly braces and the number of values in a row, may be 

less than the total number of columns, this is allowed. 

This was similar to how we saw that, even though you had declared the size of an array, 

you could give one dimensional array, you could be less than that number of values as 

the initial values. The remaining values will just be 0, same case occurs in the 

multidimensional array. So, let us watch an example, if I have an array a number of rows 

unspecified, number of columns 3. 

But, each row let say I have 3 rows, each row does not have exactly 3 elements, one the 

row 0 has just 1 element, row 1 has only 2 elements and so on, it will be initialized as 1 0 

0 because in row 0 I have given only 1 element. So, that will be the first and the 

remaining will be 0, 2 3. So, I am short of 1 element that would be 0, 3 4 5 I have 3 

columns and I have given 3 values. So, it will be initialized as 3 4 5. So, the initialization 

on the left hand side results in the matrix on the right hand side, here is all initialization 

words. 



(Refer Slide Time: 12:40) 

 

Now, let us look it access mechanism in somewhat greater detail. So, let us ask the 

following question, instead of matrix 5 by 6 I have return and function to read a matrix 

of size 5 by 6, can I give a 6 by 5 matrix? So, this is a matrix of 5 rows, 6 columns each 

instead can I give a matrix of 6 rows 5 columns each, the total number of elements is till 

30 would it be the same or would it be even a matrix of 10 by 3, 10 rows 3 columns each 

all of these have 30 elements. 

Now, as for as c is concern are all these the same, the answer is that no, it is not correct 

neither it should be. But, we will say that the answer depends on the way the array 

elements are accessed. So, will see this in greater detail. 



(Refer Slide Time: 13:40) 

 

So, in order to motivate there let us introduce the problem of passing an array to a 

function and let us look at the issue in greater detail. Suppose, I want to take two 

dimensional array of type double 5 by 6 and print the sum of entries in each row. So, this 

is similar to a matrix program, that we have seen much, much before given a 2D matrix, 

for each row you have to find the sum of elements in each row and just print it out. 

So, in mathematics this is often called marginal's. So, let us just compute the marginal's, 

we have a function void marginal's, it takes matrix 5 by 6, it has int i j, i is over the rows, 

j is over the columns and I also have a row sum variable to keep track of the sum of a 

row. So, what do I do, I have an outer loop which goes through all the rows, for each row 

I initialize the sum to 0. Now, for each row I have to some all the elements in the i th 

row. So, I have to sum all the elements in the columns j 0 through 5 of matrix i j. 

So, I will go through the elements and add them into the row sum. Once I am done with 

the last column of row i, I have the row sum for row i and I will print that. So, this printf 

is happening in the loop for row height. Now, let us look at a slight modification, we say 

that instead of printing 5 rows I currently have only 3 rows of entries available. So, can 

you print me the row sum of the first 3 rows, instead of all the 5 rows. 

Now, this is very simple let us just modify the function a little bit, it takes an additional 

parameter saying, how many of the initial rows do you want me to sum? So, that is an 

additional parameter, let us call it n rows. 



(Refer Slide Time: 15:54) 

 

So, here are the number of rows for which I have to take this sum. And that function is a 

very small modification of the function that we have already seen. The difference is that, 

we now take n rows which is like, how many rows do we have to add and then for i equal 

to 0, earlier I would go from i equal to 0 to 5. Because, the matrix had 5 rows, but in now 

I will just say I will go up to n rows and the logic is the same as before, nothing else 

changes. 

So, his strange things he completely ignores the number of columns, for as for as the c 

languages concern, if you have a 2D array, the number of columns is crucially it has to 

be specified. But, the number of rows is not really important. So, c completely ignores 

the 5 part, the number of rows. Now, this means that we could pause less than 5 rows 

into the same function. Since, we are not checking for example, that encloses less than or 

equal to 5. 



(Refer Slide Time: 17:11) 

 

So, let see an example here is the completely surprising example, that this code is the 

same as before, though only difference is highlighted in read, that I have now omitted 

what is the number of rows? Please relate this back to codes, that we used to right for 

arrays. Earlier, I said that for an array, you do not need to specify the number of elements 

in the array, when you write a function taking an array as parameter I could just say int 

arr and then empty pair of square brackets with no size in between. 

So, we have a similar phenomenon for 2D arrays, except you are not allowed to omit 

both rows and columns, you have to specify the number of columns. But, you have the 

flexibility that you are allow to omit the number of rows. So, the number of rows is not 

important, you could omit it and just given empty pair of brackets and the code will work 

as before. 

So, this means that the above program actually works for any k cross 6 matrix, where k 

could be the number of rows. And this is because c does not care about the number of 

rows, only about the number of columns and y is this asymmetry, why is said that it case 

about the number of rows, but not the number of columns, will see this using the two 

dimensional array addressing. 



(Refer Slide Time: 18:43) 

 

Let say that I have return code for computing marginal's and it takes these parameters 

double mats empty pair. So, the number of rows is un specify, the number of columns is 

6 and then it takes an additional parameter n rows, which says how many rows do should 

I add. And then I am calling this function, suppose I have define the function elsewhere 

and I am calling this function from name. So, I declare a matrix 9 by 6 and then I will 

call marginal's on just the first 8 rows not the 9th row. 

So, I passes subset of the rows, this is 5. Because, I have declared as matrix of size 9 by 

8, but I am passing only 8 rows to marginal's and that is fine, I can passes subset of the 

rows. What is definitely not fine is, suppose you declare a matrix of size 9 by 6 and say 

that I want you to find the marginal's of the first 10 rows, then this is unsafe. Because, it 

is true that the marginal's function does not really care about the number of rows. 

So, it will work for any k cross 6 matrix. But, you cannot hope to pass arbitrary junk 

values to that matrix. For example, you have just declared a 9 by 6 matrix. Now, the 10th 

row of the matrix is basically invalid. So, if you pass it you could expect your code to 

receive a segmentation evaluation, when your run the code. So, when it processes the 

10th row what it, it was basically cross the limits of the array. So, the code may have a 

segmentation evaluation. 

So, note the difference between saying that it could marginal's could work with arbitrary 

k cross 6 matrices, it is till true that if you pass junk values to the matrix, your code will 



crash. If your code is a valid matrix, then you can pass an arbitrary number of rows 

inside the matrix. So, the summary is that as with one dimensional arrays, you should 

allocate your array and stay within the limits allocated, within those limits the number of 

rows does not matter. But, it does not mean that you can over suit the limit and hope that 

your code will work, it may not and it can crush. 


