
Introduction to Programming in C 

Prof. Satyadev Nandakumar 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 3 

(Refer Slide Time: 00:22) 

 
 

Once we have understood what algorithms are, we will start writing a few simple 

programs in the C programming language. Before we begin, we will give a brief 

introduction to the process of programming. When you are programming, you follow 

typically, what is known as the programming cycle and this contains three parts. One is 

the process where you write the program or edit the program, and after you are done 

editing the program, you save it and then you compile your program. If your compilation 

succeeds, you are ready to run the program. If your compilation fails, then you return to 

the editing step and correct the errors and compile again. Once compilation process 

succeeds, then you can run the program and check whether the output is correct. If the 

output is correct, you are done; if not you go back to the edit process. 



(Refer Slide Time: 00:59) 

 

So, this is why it is known us the edit, compile, run cycle. So, you edit the program first, 

then compile it. If there are compilation errors you go back and edit it again, otherwise 

you run the program. When you run the program, if the logic is correct, then you are 

done. If your logic is incorrect, then you go back and make changes to the program, 

compile it and run it again. So, this is the process, that we have to follow in the, when we 

program. We look at each of the steps one by one. 

(Refer Slide Time: 01:38) 

 

In editing, it is typically done in what is known as in editor. Now, editor is a program that 



lets you create a text file, make changes to the text file and update the text file, later save 

it. So, in order to create a program, pick up particular editor of your choice. If you are on 

Linux, I would recommend a simple editor like G Edit. If you are on windows, there is 

free editor called notepad plus plus. Be careful that this is not the usual notepad that 

comes along with the system. Write your code in, in editor of your choice and save it into 

a file. Let us call it Sample dot c. 

(Refer Slide Time: 02:25) 

 

Once your code is saved, you have to compile a program. Now, why do we have to 

compile a program? Why is this step necessary? The computed does not understand C 

per say, it cannot execute a C program or the individual statements in a C, in C language 

correctly. For example, let us say that in C you can write g equal to a percentage b. The 

percentage operation stands for modulo. So, this statement says that you take a modulo b 

and assign it to the variable g. 

Now, the microprocessor, the processor in the computer cannot execute this statement 

because it does not understand this C programming language. So, it translates it into an 

equivalent piece of code consisting of even more basic statements. For example, a, this is 

just for the purpose of illustration and it is not important that you understand exactly 

what is going on, but in a statement like g equal to a percentage b, can be translated into 



bunch of statements saying load data from particular memory location into particular 

register, load the second piece of data from another memory location to the second 

register, divide the contents of these two registers, store the reminder in a third register 

and then finally, take the result and store it into a third memory location. 

So, the simple statement that we wrote, g equal to a percentage b or g equal to a modulo 

b, becomes a bunch of basic statements, that the microprocessor can understand and then 

it execute these statements. 

(Refer Slide Time: 04:17) 

 

So, why not program in the microprocessor language or in assembly language? Writing 

programs in machine language is very tedious. One line in a higher programming 

language like C translates into multiple lines of machine language. So, writing machine 

language code is very long and it is very tedious and is particularly prone to errors. Also, 

they are not portable. If you write machine code for a particular processor, let us say, you 

are writing the code for an Intel processor and you translate it to an AMD machine, it 

might not work. Whereas, if you take your C code and compile it in another machine, it 

will run on the machine. 

So, compilers work as a bridge. What they do is, take a high level C programming 



language and translate it into the equivalent machine code. So, think of them as a 

translator. So, you, the input is a C program and then you give it to a compiler. The 

output of the compiler will be the equivalent machine program for whichever machine 

you want to run it on. So, compiler is a translator, which translates from C to machine 

code. 

(Refer Slide Time: 05:36) 

 

How do you compile? We have just seen why we bother with compilation and on UNIX 

system or Linux systems, you can compile the program using the gcc compiler. So, gcc 

stands for the gnu c compiler. So, for example, if you have edited and saved your file as a 

sample dot c, you can just type on the comment prompt on the terminal gcc sample dot c. 

If your code does not have any errors, then the system will silently say, that the 

compilation is done and it will show you the prompt. If there are errors, the system will 

list the errors and so, you can go back to the editor, edit you code to correct errors and 

come back and compile again. As long as there are compilation errors, there will be no 

executable file created. So, the executable file is the code, is the file that you can finally 

run. And if there are compilation errors, the compiler will not produce executable code. 



(Refer Slide Time: 06:43) 

 

So, name your file as whatever you want, let us call it, yourfilename dot c and then gcc 

yourfilename dot c. It will produce the executable file. If you are on Linux, the 

executable file that it creates is something called a dot out. If there are no errors and look 

at your directory, there will be a new file called a dot out in your directory and we will 

explain the directory structures in another session, ok. 

(Refer Slide Time: 07:16) 

 



Let us look at a very simple C program. Open your editor depending on which system 

you are in. So, let us write a very simple program. It is, it is very short. What it has is, are 

three lines of code and some punctuation. This is known as the C syntax. Let us examine 

this code. What this code does is, it prints a particular massage, which is, welcome to C. 

(Refer Slide Time: 07:51) 

 

And it has various components, you type it into an editor as it is, make no punctuation 

mistakes, syntax errors. Now, if you compile the program and you have typed the 

program correctly, then a new file called a dot out will be created. So, if you type, gcc 

sample dot c and if there are no errors, it will just say nothing. If there are, if it says 

something, then there is a compilation error. 

Compilation creates an executable a dot out and now you can run the program by typing, 

and this is important, dot forward slash a dot out. So, this syntax is important, what you 

type is, dot forward slash a dot out and then when you run the program it will say, 

welcome dot, Welcome to C, because that is what the program is supposed to do… 



(Refer Slide Time: 08:47) 

 

Let us look at the program little more carefully. What are its components? It had three 

lines, the first line said hash include stdio dot h. So, it has multiple components. One is 

the first symbol, which is, has the first symbol, which is the hash. Please do not forget to 

include that. And actually, there is no space between the hash and the first i, so there is 

no space here. So, hash include stdio dot h. This line is supposed to tell C that please 

include the standard input-output library. The standard input-output library is what has 

the print routines, which will print output messages on to the terminal. 

So, if you want to have any input output component of your program, then you should 

include stdio dot h. Include this line routinely in your, in the first line of your C file 

because in the course of this class, we will often need scanf and printf statements. So, we 

will often need input statement and output statements. So, include this by default. 

Now, if you look at the second line, we will have a function called main. And again, note 

the parenthesis here that is also part of the syntax. So, main is supposed to be a function. 

All C programs start by executing the main function and it starts from first statements of 

the main function. Now, what dose the main function have? It has a single line, which 

says printf Welcome to C. So, printf is the function called to output from a C program. 

So, to print a particular massage you enclose it in double quotes. So, whatever is 



enclosed in the double codes, will be printed. 

So, to repeat again, please note the extra punctuation symbols, which tell you, that these 

are valid C statements. So, all the underline statements are, all the underline symbols are 

important. So, in the line printf Welcome to C, this is what is known as a statement in C 

and statements in C end in a semicolon. So, this semicolon is also important because it 

tells you, that this is where the statements ends, what typical errors do we have when we 

code in C. 

(Refer Slide Time: 11:34) 

 

Let us systematically enumerate a few common errors that could happen in even a simple 

program like what we have seen. For example, you could forget to include stdio dot h. If 

you do not include the standard input library, then the compiler will give you an error 

message. You may forget to include the main function, then also you will get some error 

message. You could forget to include the semicolon in the statement, you could forget to 

include the braces, the curly braces in main or forget to close the double quote, open or 

close the double quote in the printf statement. So, these are a few errors that you could 

make even in a simple code like what we have seen. 

We have only three lines, but they could also have errors. I would advise you to try 



deliberately making these mistakes in your code, try compiling them and study the error 

messages. Once you are familiar with error massages, this will help you later in your 

coding, because when you see the error massages you can guess what errors did you 

possibly make in your code. So, go back to the code and correct it. 


