
Introduction to Programming in C 

Prof. Satyadev Nandakumar 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 20 

 

In this session, we will learn about one more fundamental data type in c. So, far we have 

seen ints and floats. Ints are supposed to represent integers and floats are supposed to 

represent real numbers. We will see the third most important data type which is character. 

So, it is called char in c or char. 

(Refer Slide Time: 00:23) 

 

C allows a character data type to be 1 byte that is 8 bits wide, and 1 byte can hold exactly 

one character. For example, a character may be a digit like 0 so, on up to 9. It can be 

lower case letter like a up to z, it can be upper case letter like capital A through capital Z 

and so, on. Similarly, there are other characters question marks and sharp and so, on. So, 

how do you declare a character variable, how do you assign it and how do you print or 

scan it. So, these are the basic operations that you can do with any data type. So, you 

declare a character variable using the data type char ch will declare variable of name ch 

and of data type char. In order to assign it to any particular constant, any particular 

character, what you have to do is, you write ch equal to a within single codes. So, this is 

how you would assign any character in constants. All the character in constants are 

supposed to be enclosed in this single code. For example, 0 within single codes stands 

for the character 0 and not the number 0 and similarly, a within single code stands for 



character a. 

Now, how do you prints print a characters you can use the format specifier percentage c. 

So, recall that percentage d prints an integer and percentage f prints of float, we have the 

third fundamental data type which is character which can be printed using a percentage c. 

So, if you say print f percentage c ch, it will print a. There is also an abbreviator notation 

where as soon as you declare the variable, you can initialize it using character ch equal to 

a. This is similar to saying int I equal to zero. It is the same concept. 

(Refer Slide Time: 02:49) 

 

Now, what can we do with a character data type? For example, we can assign character 

constants to those characters variables. Now, what does a character variable mean? Here 

is the first surprise. The value of a character constant is an integer that the machines 

represent, machine stores which is usually the ASCII set. What does this mean? The 

machine deals with fundamentally bits. So, you have a data field which is 8 bits wide and 

this is sequence of bits say 1 0 1 1 0 1 1 1. 

Now, here is the bit pattern and if you see that this bit pattern is a char, then the machine 

takes this integer, takes this bit pattern as an integer and looks up a table known as the 

ASCII set table and sees which character it is. So, the value of the character constant is 

actually an integer. What does that integer represents? The integer represents a particular 

entry in an ASCII character table and what entry is in that particular location, that is the 

character constant. So, think of it like the following. The character is just an 

uninterpreted sequence of bites. If you tell the machine, please read this as an integer, it 



will read this as an integer. If you read this, if you tell the machine please read this as a 

character, it will take that integer, go look up the ASCII table and see that this integer 

stands for the character c and prints that. So, by itself the bit pattern can be interpreted in 

multiple ways. 

So, here is a surprising thing which is different from natural language. There are certain 

natural languages where this does not typically happen with Indian languages, but there 

are certain languages where you have a character and how you read it depends on where 

you saw it. So, if it was in the middle of a text, then this is an alphabet. If you saw this in 

the middle of a numbers sequence, then it is a number. What happens in the machine is 

somewhat similar. You have a bit sequence and this thing is interpreted as a character by 

looking up the ASCII set. ASCII stands for American Standard Code for Information 

Interchange, and it is one of the popular encodings for characters used in computers. So, 

the code chart looks something like this. 

(Refer Slide Time: 05:56) 

 

You have 256 characters and characters can be looked up in a table. The table entries are 

in hexadecimal so, base 16. We will come to that little in the course why basic 16 is 

convenient,, but there are 8 rows and 16 columns in the table. So, in base 16 notation, a 

stands for 10, b stands for 11, c for 12 so, on up to f for 15. So, this is what is meant by 

base 16 notation. 

So, let us look at what does the number 7 a represent. 7 a is row 7 column number 10. 

So, that is the number that I am interested in. What does 7 a represents? It means 7 times 



16 plus 10. So, in base 10 notations, the number 76 let us say so, if I have this number 7 

in base 10 notation, this; obviously, stands for the numerical values 7 into 10 plus 6. 

Similarly, in base 16 notation, 7 a stand for 7 into 16 plus 10. Remember that a is 10. So, 

you have 112 and similarly, hexadecimal 2 3. So, row 2 column 3 for example, 

hexadecimal 2 3 means look up 2 time 16 plus 3, the 35th entry in the table. 

(Refer Slide Time: 07:51) 

 

Now, here is the structure of the ASCII code set that you use in c, the first 32 characters 

basically from 0 0 hexadecimal to 1 f hexadecimal. So, these 32 characters which are 

shaded, are what are known as special characters, and they are not printable. They are 

required by the computer for certain special purposes. Code 2 0 that is decimal 32, 2 0 is 

2 times 16 plus 0. So, this particular entry corresponds to the space characters. So, this is 

just a blank space. Code 21 corresponds to the exclamation character and so, on. 



(Refer Slide Time: 08:40) 

 

So, the printable characters in the ASCII code are hexadecimal 20, that is decimal 32 

until 126. So, what is enclosed in the green parenthesis, these are all printable characters. 

Now, out of this, the capital letters start from x 41 which is 65 in decimal and go on up 

till decimal 90. Small letters start from 97 and go on till 122 and so, on digits 0 to 9 

occur before any character. So, why we need this information? This is how the characters 

are stored in the computer and do we really need to know it? 

(Refer Slide Time: 09:46) 

 

The point is not that you have to memorize this table. You do not need to memorize the 

table, but you need to remember certain abstract properties of the table. We will make 

that precise in a moment. We do not have to say that the ASCII code for a is 65 or 42 that 



is a waste of our memory. So, let us just see what we can do with this table without really 

remembering what that table looks like. So, there are some ideas behind the design of the 

table, how the table is structured which c programmers can use. There is no need to 

remember that a particular character has a particular ASCII value. 

(Refer Slide Time: 10:37) 

 

So, let us just recall. A character constant is an integer, namely the ASCII code for that 

character now which means that I will emphasize this with a very strange code. I can 

declare character ch and say character ch equal to a within single codes that; obviously, 

initializes the character to a. It assigns the value a to the variable ch, but I could also do 

the following characters ch equal to 65. Why 65? The ASCII value for a was 65. So, 

instead of writing it as a within single code, I can write ch equal to the number 65, and it 

will be the correct ASCII character anyway. Now, this means that the same character can 

also be interpreted as an integer if you really want to think of it that way. 

So, for example, I can say percentage f percentage c ch if I do it in print f, it will print it 

as. So, the first print f will print a, but I could also take a character variable and ask c to 

print it as an integer using percentage d, it will print 65. So, remember that the external 

form that we see in some sense is the letter a. The internal representation is the number 

65 because 65 is the entry in the ASCII table corresponding to the character a. 



(Refer Slide Time: 12:22) 

 

Now, one more thing is that you can print arbitrary numbers, even non-printable 

characters you can sort of print them using c and one way to do that is I can print any 8 

bit character with a hexadecimal representation like backslash s, backslash x followed by 

the hexadecimal to digit. For example, backslash x followed by 7 is the bell character. 

So, let me go back a couple of times, couple of slides. So, if you look at the 7th entry in 

the ASCII table, it is represented as bell. It is a small bell in your system. So, if you ask 

the system to print the 7th character in the ASCII table, what will happen is that your 

computer will make a small beep sound. So, there are certain non-printable characters 

which can also be printed directly using… ok. 

Similarly, let say back slash x b is the 11th number in the ASCII table, it is a vertical 

space. So, if you print that character, it prints a vertical space. Similarly, if I ask it to print 

hexadecimal 41 using backslash x 41 so, x 41 is 4 times 16 plus 1 which is 64 plus 165 

and we just saw that ASCII value 65 was the character a. So, if I ask it to print ch which 

is hexadecimal 41 as a character, then it will print the value a. So, when you run this 

program, what it will do is, first because you ask it to print a bell character, it will beep 

once, it will ring the bell and then, it will print the second character which is a vertical 

space. So, it will print a vertical space and then, the third character was a printable 

character a, it will print a. So, you can ask the system to print arbitrary entries in the 

ASCII table. If it is a printable character, it will print that corresponding character. If it is 

non-printable character, it might take a suitable action. 



(Refer Slide Time: 15:07) 

 

So, just for information sake, instead of printing it as backslash x followed by the x code, 

c provides certain escape characters, some special sequences as well in order to print 

these non-printable characters. First of all until now we have seen one such number 

which is backslash n. So, back slash n is the new line character. It is a non-printable 

character, but it corresponds to some ASCII corrected. Similarly, for the other non-

printable characters, c has some escape characters. For example, back slash a is the bell 

character and so, on. 


