
Indian Institute of Technology
Kanpur
NP-TEL

National Programme
on

Technology Enhanced Learning
Course Title

Compiler Design
Lecture-09

by…
Prof. S.K. Aggarwal.
Dept. of Computer Science and Engineering.
(Refer Slide Time: 00:17)

Good morning so let us start on new topic called weather and on finishing the bottom up parsing

so bottom up parsing is a method where you start constructing the parse tree of the leaf nodes

and then try to reduce the whole of the string with the parse symbol and if we succeed in that let

me say that the string belongs to language is specified by the language by the down so in this

case you want to construct the parse tree from the input that the leaf nodes or another way to

look at it is that if I say that W is a valid string in the language which is specified then I should

be able to somehow reduce w to start symbol s this is our way of saying.
 So let us look at the grammar and so let us take this grammar and to see whether this thing is

specified by the and what we want to do so here is the grammar where we have a start symbol s

and then corresponding to the production of non terminal a I have two rules and then I have one

more rule and then there is the string I want to parse.
 (Refer Slide Time: 01:43)

So let us take this grammar and try to see whether this spring belongs to the language which is

specified by the language and how do we go about and what we want to do is we want reduce the

string to the start symbol so what we try to do here is find out is we try to find out the substring

here it matches the right hand side of a production and I a m going to replace by its left hand side

and we continue and hope this I valid string in the language specified by this grammar then you

will be able to reduce the whole string eventually to S right.
So the first thing I do is that here is b which matches right hand side of a production which says

A goes to B and I replace this by A and after reduction my string becomes other become sentence

form now again I look to this and find there is another B o I just go ahead and try to replace that

by its left hand side.
And when I do that then I get a string like this now let us again try and see if that I can find a

pattern on the right hand side so b can match d this right hand side then if I replace that by b

what will happen so I m replacing this by B I reach here now how do I proceed from this point

can you find a pattern on the right hand side which matches one of the productions no so it

appears that the choices I made took me to a situation where we took the string actually does not

belong to actually this string language which is specified by the language.
(Refer Slide Time: 03:59)

Now I request everyone that from next class onwards either you reach here on time you know

that there is class at night and there is no reason mean and you know that you can reach here five

minutes early I mean it disturbs the class we discuss we have a pretty good class of which we

have already spent seven minutes and we class keep coming in and I am sure I'm in the next five

ten minutes when you know that there is class at nine now I can't understand why you cannot

come in time I mean if you wake up at 6:30 you wake up at 6:00 wake up five minutes before

that you will reach here at night I dont say any problem this habitual habit of saying that there is

a class at nine time I can always and the true then I can spend and it is just not an acceptable

situation so next class almost make sure you are all on of time .
So when we started making these choices so at some point of time suppose I make slight

different choices then let us see what would have happened so when I was so another than going

in this direction let me just keep this here and try to my rest of the strings on this side and when I

say that this reduction happens okay I am going to this situation and now when I make this

choice I was saying that match this B as the right hand side instead of that I make a different

choice and I say make this match this ABC which is right hand side of a production and then

replace it by itself .
So if I do that like this and now again if I look at right hand inside pattern here which is B which

matches right hand side of a production like this gives me. I get a screen like this and this

matches now right inside of the first production the whole thing and here you to start s and

therefore I can conclude that the string I started with this a valid string in the language I can

show it on the string all these steps but only problem which happened in this part was at some

point of time rather than making this as a choice of matching.
 I made this as a choice of the solution so the same thing like if you recall because saying at

some point of time of parsing which terminal to use here the issue is going to be which substring

to match and if I have more than one choices and somehow I need to find a strong method of

doing this kind of reduction which will always identify that this is the right string and this is not

the right string to match.
 So this is what will be going to the part of building the bottom of parser that when we process

this grammar somehow this information will be captured so is this point clear that two different

choices can lead to a situation which are entirely different from each other so this is what is

captured here okay but let me also simultaneously observe that if I look at this complete

reduction .
(Refer Slide Time: 07:48)

And I also look at the rightmost derivation of the string starting from s okay then I actually I am

doing a derivation which is that most but rightmost that most which is talk down and it gives me

the same string and now if you see the steps here it this actually is the rightmost derivation that

means what I am doing is I am going in reverse of now I won’t go into the proof of saying that if

we are building a bottom of parser then the reduction has to be in the reverse of this information

somehow will be captured .
 When we start constructing the parser for grammar lines when we start the bottom of parsers are

really the reverse of now these are also known as shift reduce parser now shift reduce somehow

means you can get this feeling that when you need to use the stack but basically what that means

is that I can take any string and when I say that I am taking a string like this and I want to do a

reduction concept to me now you can see that some parts I have seen and once I have seen some

part than I am doing a reduction okay .
So let us put some imaginary symbol in middle of a screen and let me call it dot and then we say

that two parts which are separated by the special symbol dot.
(Refer Slide Time: 09:29)

when you say that two dots which are separated by the special symbol dot when you say that

because I am doing now a reverse of right post derivations then the left-hand side of dot is going

to be a string of terminals and non-terminals and the right part of what is on the right of the dot is

always going to be a string of terminals okay so look here what is happening okay.
(Refer Slide Time: 09:53)

 If I say this is the derivation I am doing then first we write this then from this B I derived this

then from A I derived this and then from this A I derived this okay .So at any point of time what

was happening that was saying that I will be somewhere here and then I said I am going to

replace this then my dot must have been what I was just reducing here then this dot must have

been here and then this dot must have been here okay.
 Now you might somehow this dot appeared in these positions in my string then what was going

on what was going on was that if you now see the right-hand side of the dot you only have either

a null which is the final state and you are going to have only a string of terminals here but what

you have on the left hand side is a string of terminals and non-terminals so basically this is my

start state is that I will always start when I say that I am beginning this is where I started with

that to begin with my dot will be here .
 And then I say I will keep on shifting this dot along the string let me pick up another example

and keep this example I use so that we can do this comparison but basically what we are doing

here is that at any point of time if I say that this is the kind of computation .
(Refer Slide Time: 11:15)

I have something like this so on this configuration is telling us I have some string of terminals

and non-terminals on left and what I have on the right hand side up basically and now when I say

that I have something called a shift action shift action says that the symbol which is immediately

to the right of dot must be shifted to the left of top okay so my configuration after this is going to

be something like this or if you are using w with the whole string .
 Let me just replace it with r my configuration will be something like this and what will be the

new section new section is saying now see the example there that if you see something which is

immediately on the left of dot and which is matching the right hand side of production then we

say that we are going to do reduce action ,so reduce section is saying that if this part of this

starting from here matrix right hand side of the production match that and replace it by the left

hand side of the production .
 Now let me also alert that when you talk of bottom of parser is not as that you were starting

from start symbol and by having to look ahead of one you were able to figure out production use

whatever parser to begin with these slightly no need to be but as you get into it will start getting

good so on this part that somehow you will find that this imaginary position of dot is going to

create lot of confusion did we really give the definitions so initially my footage is that dot I to the

left hand side of the string.
I am trying to match and what is the final position final position is going to be that on the right

hand side of dot is going to be null and on the left hand side of dot is going to be start symbol.

 (Refer Slide Time: 13:24)

So my final position is going to be something like this which is here and initial position is going

to be and then I have to see that what are the situations under which I do a shift and what are the

situations under which I reduce. So for example I was in this case I said that do a reduce take it

to B but when I shift the dot here that I am saying do not do a reduce here but keep on shifting

and then do a reduce okay .
 So you have a choice between doing either the shift or doing a reduce at least in this size of B

and then I said that whatever is on the left hand immediately left-hand side and I reduce that to

either I so raise question is that if I have a choice and the choice is saying that I do is shift or

reduce in one of the choices. let me come conclusion saying string does not belong to the

language specified but this choice makes sense because I could reach my start symbol my

parsing method should make sure the right choices right now there is some manufacturing like

we did in parsing.
I concluded all these pin down that terminal expansion and look at symbol then use this similarly

here we are saying that if dot is in certain position that means I have to do a shift or reduce and if

I have to do a reduce than which move like to reduction if I can answer back then I should be

eventually we will have so but right now have a positive once I create a possible take action only

one action shifting I mean reduction is one action dot will remain here right so what I have done

is I found a pattern which is on the immediately left of dot .
I found that pattern that is right inside of production and I just replace that by each step

concerned similarly when I found that on the left hand side of dot there is a pattern which

matches a particular production then we just replace that and I kept the dot here what I am NOT

shown in between is that from this I must have done this shift .So let me take an example to

reduce and then we come back to this answer okay.
(Refer Slide Time: 19:13)

 So shift reduce parsing is it will have two actions either I can do a shift which says move

terminal symbol which is on the right hand side of the left hand side of dot which this is my

configuration which says alpha dot P Q R then after shift this is going to the alpha P dot Q R so P

has been shifted on and then I have a reduce action which says that if I match something which is

on the left hand side of dot and this production then.

 I am going to reduce so if this is the pattern I have it says alpha dot P Q R production then and

the production is A going to beta up then my configuration will be alpha A dot P Q R this is

reduced action so b in this case I have shifted P to the left of R these are the equations.
So I keep on doing these mix of shift and reduce till I reach either the start symbol or error

symbol start symbol mean that I am in the accept state saying that this is a valid string and error

state saying that this is not a valid string these are the only two confirmations so let us look at

this example and try to parse this particular string so again I just try to work it out for you so that

please get a feel for what is going on and.
(Refer Slide Time: 19:48)

What we have is trying to say that I have I D *I d + ID this is my start string and my dot is and

the grammar is on the top it says he goes so what I do now is first I will do a shift so my action is

shift that it now becomes my string becomes of this complication and then I do reduce because I

find that immediately on the left of dot there is a pattern which message is right inside of a

production so my reduce is by action saying that I D gets converted into E and my configuration

remains same.
Now once again I do a shift action when I say that E * . ID and then Id is configuration like this

and then I do one more shift and this shift take me to a configuration like this and then I do

reduce action which says that so let me underline whatever when I do a reduce section so here is

an ID before I went to reduce section there is one ID which I will now do using a new section

and then now I have a choice whether I want to shift or I say that E*e matrix right hand side out

for production and right .

So what I decided at this point of time is that lets me do reduce action I am not telling you why I

am making these dot while reducing instead of shift but let us assume that this is the action I

think then what happens is this becomes my configuration and then I shift once again and shift

action gives me first string like this and then I once again shift and this shift gives me this

configuration and then I decide that I want to do a reduce okay.
 And if I do a reduce this gives me and then I want to do one more reduce action matching this

which gives me now and each my start symbol dot is immediately on the right-hand side so I say

this is a valid string which identify true now you can also see in this case suppose when I have

this choice of saying that rather than doing a reduce here I need a shift what would that happen

would I have reached this state finally. So let us try that what was the second alternative in this

case when I was doing string.
(Refer Slide Time: 23:23)

Let me say the time in this table in which is e * e .+ id and rather than doing the reduction I do a

shift what will happen I get something like this I do one more shift and that makes me to this

state now I do one reduce and deduction is now on this so this gives me this configuration then I

o one reduce it says I match this as the right-hand side and remember that naturally I always

wanted to do immediately starting on the dot position.
 So I will not find a string like e*e and I say I will match that but I always find a string which is

immediately on the starting from left so this will give me this reduction and then if I now reduce

you almost have an idea perhaps that why this would have led to the wrong things and this is the

right set of steps I do so is the second you find that if I am trying to if I know that this is

multiplication and this is addition then this has higher precedence and I want to make sure that

this gets evaluated first okay.
 Before this and therefore if I follow this sequence then I am doing things in this sequence

although I somehow need to take care of all my business to set associative also might specify my

grammars and so here is what we were just gone through that finally I reach this it off step I say

this is except I am just doing shift actions okay.
(Refer Slide Time: 25:58)

 Now when I start with this string when to do a shift reduce and then and my whole algorithm is

going to be based on what equivalent to if I try to look at bottom down parser equal to saying the

first and follow said computation I do some reprocessing here I do some similar configurations

and try to take X number and encode it into parse table so that I can always is it beginning to

sink him out and this tomorrow here when we started so continuing on shift reduce parsing .
Now let us also start simultaneously start talking about the implementation so whatever is on the

left of dot I can keep that of this side and whatever is on the right of dot that can be string which

is so this is what we do and the most important issue we want to raise here is to shift so reduce

action should be only done when we know that and this is here now let us start thinking about the

first example .
Let us do a block saying I cannot proceed and I input conclusion saying at this is the wrong

string but if I it is the right set of reduce actions when I was able to reach the left hand side A

which is the start symbol so therefore we are saying that the reduce action I should take only if

the reduction is going to take me somehow to the start symbol if it is a valid string the language

does not matter so this is somehow is this is a fact which needs to be captured somehow when I

start creating my parse table .
So let us look at some of the properties of bottom up parser before we go any further one fact this

is more powerful parsing technique as compared to the top-down parsing and this lots of

numbers is known as alum numbers it is more expensive than a level-1 or equivalent and when I

say expensive expensive in terms of creating the parse table to put in more effort create the parse

table also is going to be large it is will to occupy more space as far as parsing itself is concerned

that is going to be still the linear time and I will not affect me okay.
 So it is more expensive than a little one and therefore from later point of view you can see that it

can not only handle left recursive grammars but it can handle almost all programming languages

and therefore this also remains the method of choice for creating parsers for most programming

languages and also it is a natural expression to write in the programming syntax .
(Refer Slide Time: 30:05)

So for example when I had these number like e e +t or T my top down parser was not able to

handle that and I had to rewrite my grammars into this form and so let me just write this form if

you think this grammar it is not really natural to figure out that what we are talking about - part

of the expression class if I read this I can immediately figure out what I am talking about so this

is a much more natural way of expressing language than this kind of notation which can handle

parsers .
 The act is a prime example because the first rule of parser also another interesting thing is that

when it comes to vertical v the bottom of parser guarantee that it will never do a wrong shift they

pass the bottom parsers which can either be counted rather than saying these start certain

symbols in this case we immediately be able to pin that down and therefore properties but as you

will find that we be able to then look at these properties and these properties will just stand out as

we construct the parser .
Now let us also simultaneously look at one of the issues that we face in a bottom-up parser so the

first question which you have not answered is that this when to shift and when to reduce it so in

this case I was doing reduce and in this case I was doing a shift I should be able to clearly answer

that and then I should also be able to say that which production I want to use for reduction

because there may be situations where I may have more than one right hand side matching

production okay so sometimes I can have this reduction which says expose to a challenge and

always be done okay.
 But we do not want to do that so this question needs to be answered very clearly and sometimes

parser can reduce in different ways like here it can reduce in different ways so what we have to

remember here is that if I take stack so look at it this way so let me just explain this point

because when I am doing let us keep this example. I this is it has lot of symbols .
(Refer Slide Time: 32:45)

 Now this is my stack it has lot of symbol when I say that I am matching the right hand side of

the production so this is so much that I can say this matches the right hand side of production and

that means somewhere I say that if my stack is containing some string Delta which is a string of

terminals and non-terminals I got to divide this into two part okay and this really is in one case

this is the division in another case this I beginning needs to answer.
 So this basically saying that suppose I say that Delta is my stack configuration and input symbol

is a then shift obviously will give me Delta yeah but when I say reduce reduction can happen that

I can either take this part which matches the right hand side of the production or I can take this

part which matches the right hand side of the production and this my answer will have to figure

so what we start doing now is that how do we keep track of what is the length of this .
So if I say that I can have a combination of alpha and beta and multiple combinations then how

will you give the length of this whether this is the right size or this is the right size so we will

start giving some definitions so that at least we start building the parser so after raising all these

issues let me give the first definition and that is it handle is something which has two properties

so handle this right hand side of approach if I now look at this .
So what I was really doing was I was matching this ID I was matching this ID then I was

matching e*e to handle something a string that matters right hand side of a production and the

second part which is more important is that if I replace this right hand side of a production that is

going to give me a spec within the reverse of right most derivation so unless these two conditions

are satisfied .
 Something cannot be designated so this was precisely the problem if you recall that first

situation I had first situation was I started with this and I said this matches and I replaced this by

its left hand side and then I alone is said I am going to replace this by its left-hand side so it

matches like inside of a pattern but if I look at the reverse of rightmost derivation then this

replacement was not giving me the reverse of right most derivation.
And therefore this was the wrong choice and therefore now if I want to define my shift use

partial in terms of handle I can say even identifying handles and keep on replacing handle by its

reference if I keep on doing that because I am doing now what is the handle now this is saying it

is going to give me a step in the reverse of right most derivation so eventually lead me to the start

symbol in some of this information will have to be captured in the method that each time I do a

reduction somehow that is going to lead to a reverse step in the right most derivation .
 So let us look at this so if this is string what will I do is I will start from here and shift this and

then I will do a reduce then I will shift this then I will shift this I will do a reduce and then I you

either a shift continue to shift this and then shift this will reduce then replace this and replace this

without and you could so I have the same problem so you tell me which one of them is wrong .
So that mean that this grammar is not in a form where I can generate string without any problem,

so what I the problem when I had more left most derivation o bottom of parsers is that I do not

have ambiguous grammar actually it is an I want to make sure that the grammar is in form and

therefore I wrote e goes to e+ t are saying that this has higher precedence than this and therefore

when I had this choice between either doing a shift or reduce then I make the right choice.

And say that do not do a reduce the shift first and then no reduction so the problem for

something like this suppose my configuration at some point of time was this would have in the

configuration now I have a choice saying that either I do a reduce or I do shift and but because I

define somewhere that this has higher precedence than this would have resolved in favor of a

shift and a shift would have left to situation like this .
And then if I do a reduction here it Is a right reduction so you do not give precedence in the

grammar you use some tool to give a business otherwise I said the matter should be rewrite the

grammar so that you do not have ambiguous any it will always be and therefore I am writing my

grammars all the times which is in this form right this grammar is not ambiguous this will always

give you one left most or one right most derivation .But if I write grammar like this and I cannot

write it but if I use a tool.
 (Refer Slide Time: 41:11)

Then I will be able to use something like this it said that these have same associate and this has

higher precedence than this therefore best method I said was like grammars which are ambiguous

and then the first thing we talked about when we discuss now because no it was not in the

reverse most derivation I showed you the right most derivation should I go back there okay let us

go back to that point once again.
 So this is the rightmost derivation and if I just start doing reverse most derivation if I reduce this

P to a then that will not give me a stack here but if I do this reduction that is okay right in fact it

was not and this is the derivation so I am saying that if I remember this fact that whenever I do a

reduction action or I do shift action that should lead me to the reverse of right most derivation

does not mean that I first right most derivation and check it.

 I can always devise a method where I can take this grammar and when I convert this into tabular

form this fact is captured there actually how do we write right most derivation because I have not

shown you how to construct the parse stable this fact somehow will be captured in the parse table

that what is the right hand see ultimately what I have to do is so let me go back to the last point

what I was showing.

 (Refer Slide Time: 44:30)

So here we are saying that a string that matches the right hand side of a production and whose

replacement gives a step in the reverse right most derivation that means if I can have a method
which I capturing this information yes you are going into a territory which you have neither

business for life for which we do not even have tools so it is not symmetry first I mean look at it

this way I defined the concept of a look at its symbol and I was reading it from left to right yes .
 Can I say the same thing about reading from right to left and say that rather than look at symbol

and I have a tale simple no so symmetry does not apply so let us stick to the background and not

stay that icons put dot anywhere are between dynamically replaced and if I start from there all

right then huh then you can say that why go through this parsing method I am talking about a

specific parsing method there are other parsing matrix which is not even worried about so natural

language do not have such clean interpretation of the precedence and associatively then you have

.
 So let us do one thing okay let us move slightly ahead and then keep coming back till this issue

gets resolved because if you get stuck at a point we may not be able to put at this point of time if

it is not here at least by taking an example what are the parsing we know always is an issue when

it takes time to sink in but once it inks in find with it okay so let us look at what a handle is and

what we are saying is that if I staged .
 I am doing a rightmost derivation once I handle means is that if s in a step of rightmost

derivation takes me to a configuration which is α β w and then one step of rightmost derivation

says that since w the string of only terminals in is the first non terminal on the right hand side if I

see from the right hand side and there is a production which says a goes to beta then alpha aw

gives me alpha P alpha beta that B so this is the rightmost derivation and the reverse of rightmost

derivation will be that I look at beta and replace it by E .
So in this case we say that beta is not handle, beta is the handle only if such as that is possible to

static post-derivation so for example here b is this piece the handle but this B is not a handle so it

is not that something matches right-hand side becomes a handle but it also ful fill this property

that it should give me this step so let us take a break today I will just finish this yes so what we

want to do is we want to reduce only handle and not any time inside okay .
And then what is handle tuning handle tuning is saying that if we tie the handles and a going to

beta is a production then replace beta by a and rightmost derivation in the reverse can be

obtained by just by handle.
(Refer Slide Time: 49:55)

So the question now is in a bottom of parser how to identify them because if I can identify

handle then my job is done okay so whole construction of whatever parser is through handle

booming and by the pattern of that is something we will start discussing tomorrow and by this

week end we will be able to finish at least one version of bottom up parsing.
Acknowledgment

Ministry of Human Resources & Development

Prof. Phalguni Gupta
Co-ordinator, NPTEL IIT Kanpur

Satyaki Roy
Co Co-ordinator, NPTEL IIT Kanpur

Camera
Ram Chandra
Dilip Tripathi
Padam Shukla

Manoj Shrivastava
Sanjay Mishtra

Editing
Ashish Singh
Badal Pradhan
Tapobrata Das

Shuubham Rawat
Shikha Gupta

Pradeep Kumar
K.K Mishra

Jai Singh
Sweety Kanaujia
Aradhana Singh

Sweta
Preeti Sachan

Ashutosh Gairola
Dilip Katiyar

Ashutosh Kumar
Light& Sound

Sharwan
Hari Ram

Production Crew
Bhadra Rao

Puneet Kumar Bajpai
Priyanka Singh

Office
Lalty Dutta

Ajay Kanaujia
Shivendra Kumar Tiwari

Saurabh Shukla
Direction
Sanjay Pal

Production Manager
Bharat Lal

an IIT Kanpur Production
@Copyright reserved

