
Indian institute of technology
Kanpur
NP-Tel

National Programme
On

Technology enhanced learning
Course title

Compiler design
Lecture-05

by…
Prof. S.A, Aggrawal
Dept. of computer science and engineering.
So let us talk about discussion from where left yesterday and we started looking at how to the

design lexical analyzer want suppose to do and what are the kind of issues we may face by

designing it and one issue we looked at also t format for this is format for talking looking at the

keywords for lock and we were looking at some examples of TL 1with found a keywords for

deserved and what kind of problem it can give guys there are some examples where you find that

reading them pasting them and understanding them will where some skills of straight form okay

another issue in the similar language maybe take something like you would like to declare.
(Refer Slide Time: 00:55)

Declare with a keyword which said back want to declare some variables of certain time so I want

to give a list of arguments here and N and I must say: in the end I may say that all these are also

possible that actually this is a function passing all these as parameters okay when why figure out

that dealing with keywords which is declare what I am dealing with nary reference or I am

dealing with to see our function syntax and theory will be safe okay

So that means I will have to have some arbitrary look ahead because this list of argument can be

arbitrarily long and I have to have some arbitrary look ahead where I say that when I counter

character of the right : then only I k now the weather I am dealing with a declaration and dealing

with array and I dealing with up to see here and so on okay now this problem becomes really

difficult because if I am saying that remember that to saying the I am going to design a lexical

analyzer and which is going to be a buffer and my input point of we were just moving right over

the buffer make sure that I am reading something and I am getting something which means

putting back to the input stream by this arbitrary lane by it is possible.
(Refer Slide Time: 02:25)

That the whole purpose and keep moving and then after flushing many buffers I uncounted this

buffer character and that point of my decide that I already flush this buffers that means but first

that means because of arbitrary look ahead either I need ready not go first and even those buffers

may not be sufficient so I may have to remove the buffers so I gave you some examples of 410

and TL 1 now people may argue.
Let some Greek languages nobody uses them and therefore this problem does not passed fully so

question is have we resolved this issue on you know some examples of languages which are very

prevalent today which are used commonly and still have these kind of issues where I cannot just

find out without the context or kind of so lexis man being with anyone having example in money

so this is an example from C++ okay we have these syntax for template okay.
(Refer Slide Time: 03:36)

And then you have put it outputs and now but I have less pick templates what is it is it coming

the: nesting or because of output I do not know deposit so it is not that you know resolved all

these problems only thing we have to remember is that all these problems are described so far

they cannot be resolved just by using lexical language I need to know something about the

tokens which accrue in the context which means I have to shift this problem.
This part of the problem the syntax analyzer before I start finding out that what kind of symbols I

am B unit so if the symbol occurs in this context then I know see when I am just tokenizing it I

will not know because I have already tokenized have know the information and tokenized this

and there no clue of what we tokens are okay if it is in this context then I will say that it is

coming with a nesting that actually deserve who write the rules.
This is coming the fallow with this syntax and this is output but context I will know only even I

and use sub sequenced and so most of these problems cannot be handle by lexical analyzer alone

and need to do something more that means passing this information to syntax analyzer and then

what the tokens will be is this issue cleared with everyone okay so question that comes is now so

let's now get into implementation of what you want to analyze here or how we want to tokenized

and how do we describe tokens.
(Refer Slide Time: 05:20)

So here is some set of Lexis is which are basically numbers so I have a floating-point number

here another number and yet another number and we want to now bake this text so this is the first

problem and it we are going to face him you want to break this into a sequence of tokens and

there is yet another example now one of the difference between so if I look at this what does it

say so this is saying if X is equal to 0 then a the sign X and then what happens here because of

the priority of the operators of dissidence of the operator I will say that I want to first do a left

shift on X and then I assign it to X and here we are just saying this Boolean but here if you see.
There is an additional now how do I break this is it if and then followed by a variable or this iff is

the variable me on this because you were dealing with languages I give you an example

yesterday.
(Refer Slide Time: 07:46)

Then I have considered this as saying that this is an identifier the compiler would have required

two parts token us languages is going to play a role in somewhere the implementation issues is

coming so what are the two parts one part is the specification and other part is implementation I

mean that is possible we were discussing previous points but suppose lexical analyzer can make

a decision okay then there are some issues which are going to be implementation issues.
So let me give you another example of implementation issues when I give specifications of

tokens like identifiers characters followed by a number right now if I say X 10 is an identifier

and X 100 is an identifier okay now should I start saying that since I already know X 10 is an

identifier okay maybe it's already in the symbol table this also remember that this also matches

specification X could be an identifier.
So can I tokenize it there and say that is actually an identifier followed by a number we should

not write but that is a matter of implementation because this matches specifications but

somebody can say well X is also identified a fact just saying that X make x and then say 100 and

then subsequent phases will say oh that is an error that is not possible So let us keep on

discussing these issues how to break input tokens and efficiently you say that example and

pushing.
(Refer Slide Time: 10:56)

One is that the tokens have may have similar defuses like here like given an example so prefix is

singular when we have this and we actually want to look at each character only once so this idea

of the keep on pushing keep on moving my point over the inter that is going to be a over that is

going into a buffer are to handle it very efficient continuing on our description now tokens can be

described by that word language and your regular languages are and obviously they have certain

properties they have any also really handling the regular languages.
(Refer Slide Time: 11:35)

And the familiar with regular languages are and obviously that have certain properties that have

any nice mathematical theory which are develop on this and we can develop also most of really

and handling the languages and this since we have discussed this with the large retail properties

of regular expressions I just assume that notation we are going back to the notes on the books.
(Refer Slide Time: 11:57)

And notation we are going to do this is very similar that string and a sigma is the set of

characters and sigma language and then a regular expression R denotes actually a language a lot

and then we say that I can now define rules using the standard operators rules I have in my

regular definitions so simuntaniousely is a regular expression which we say that is the none

language.
(Refer Slide Time: 12:32)

And A is a symbol denotes A is a symbol sigma then we say that this expression that could be

denote the regular language and then use operators so if we say that r I n does r2 regular

expressions and then if we say that LR and LS and is specified by R and r in this specified out.
And if it define it non technician operator let I am say that r fallowed by s is actually union of

languages LR and LS and if I take so this is R operator this is non technician and then I can talk

about Boolean operations and we said this is just for sleek of revision these are the operators and

we will be use for specifies regular definition or regular language okay.
(Refer Slide Time: 13:15)

And there are examples take so what we want to do this we want to use something known as

regular definition this is something we can understand because now .
(Refer Slide Time: 13:29)

We are getting into an issue of implementation and we have moving away from and we are

moving from array it off specification so what we want to say if I have regular expression R.
(Refer Slide Time: 13:36)

Some regular expression I want to give a descript name because I do not want to keep on using

these regular expressions in expansion I want to give a descript name at this is I can see almost

like a similarity using to write something like a function you see the truth there is some of needs

to be repeated again and again and therefore I do not want to do that work of repetition I just give

a name and can we do a possible are there that is the closed similarity I can see here that every

language expression I am going to give a name rather than using Ri over and over again okay.

And then we will say that if I have a regular expression let see r1 I will give name to this d1and

then I have a sequence of these that more expressions and let me give these names and the only

property I need to worry about here is that whatever is my first definition in this sequence here

that is the regular expression over the sigma yes this is regular expressions which is sigma but

can I look at R2 because I already have d1 here I given a name this regular expression I can say

that this is actually a regular expression work sigma will be work okay.
It is a symbol in a it is a symbol in Sigma then we say that this expression and then I can use so if

we say that the language and so this is this is and then I can talk about so this is I can see that

every regular expression I am going to give a name rather than using our I over and over again

okay and then we will say that if I have a regular expression let us say r1 I give a name given to

this and then I have a sequence of these regular expressions and let me give these names that

whatever is my first definition in this sequence that is a regular expression over Sigma okay.
So this is a regular expression which is over Sigma and I you get R because I already have a d1

here so I have given a name with this regular expression I can say that this is actually a regular

expression of workers Sigma n b1 and if I look at r3 because these names are available to me I

do not want to repeat so this is like d1 and d2 can you can be replaced by these regular

expressions I do not want to repeat it here so all I am saying here is that this is regular expression

over Sigma D 1 and D 2 and so on okay.
So I can have the sequence of regular definitions so what we say here is that regular definition is

a sequence of this form okay we are the only property follow Is that if I look at any regular

expression R I this is a regular expression over Σ and all the definitions which have already

accrue so I do not loose definitions and I do not lose any context because we are saying is that I

just do not want to repeat this regular expression again and I use a very concise notation that is

the only thing is happen right okay.
(Refer Slide Time: 16:03)

So here is a fax number now if I want to describe this so I will give you an example that I

suppose I have a numbers and I want to find out all the quainter information here okay I can

describe this by saying that what is my Σ consists of digits and our special characters left and

right back again and then I can say that actually consists of 24 which is a string of digits and then

I have area port which again is a string of digits.
But which I put and then I have exchange information which is a list of digits and then I have the

phone number which is seven five eight six and then I can describe I can say that every number

must have this form that is really the very point in fact I mean one you can here you see here is

that when you actually make a call from where we just send a string of numbers and when they

do billing they are being able to they are able to find out to which number you made a call you

can find out the better this is ISD call or STD codes I can just process that then you can write the

program and you can process all that information but then this is an implementation issue that

comes okay.
(Refer Slide Time: 17:21)

What is the valid country code for example I am talking about now all this information is a

regular expression but I will say for sake of implementation that no country code for any more

than of similarly if I want to put certain restrictions or no area code any more than of support

addiction so then the experimentation issue comes in and tools we have they will provide you

certain more ways of specifying and say that this can be a digits a string of digits of know the

spring two or this could be a length of digits of at most be phone okay.
So I can also put these kind of additional specifications this is not part of regular expressions but

this is part of the tool are going to use for regular implementation you remember that in like slide

tool you could put this kind of restriction saying that what is the maximum length of string I can

have between right we have got somewhere beside that an identifier can we of maximum length

32 right now for implementation I need to remember that and then this can be part of your

specification is it safe that if your country code.
Is say more than two digits long and sigma so this is where slowly we start getting into the

implementation issues saying that we have some specification spark for sake of experimentation

we need to have more precise information about what will be valid token and all okay so I am

not going to have an arbitrary long string of characters and say this is an identify I am going to

put a restriction that whether it is way 16 or 32 so this issue clear to everyone okay so more

examples then before I get into programming languages.
(Refer Slide Time: 19:12)

So here is my email id and if I want to describe this as using regular definitions okay what is my

character set here it is a letter and then I have dot and symbol set this is my character set and then

I can say what are my letters so I can rather than using these alphabets over and over again I can

give a name to this like all this is better and then I say that name is looking for the string of

letters and address is nothing but a name forward by this symbol forward by name and so okay.
Have you look at you can have different descriptions you must say that this is a domain

information’s and so on okay and you can write different kind of descriptions of this and the they

one description fallow the restrictions not only that okay.
(Refer Slide Time: 19:58)

So let us get into more examples and now I want to get into something which is closer to what

have going to implement of part of a calls and programming in that so I want to give

specification for an identifier so identifier is something you have been discussing right from the

beginning so identifier is nothing but it comes this off let every minutes and if obvious parts with

a letter fallowed by at least one letter or digit.
 It is consist of at least and you followed by zero or more like and this and so this is the kind of

specification I can have four identifiers so what you see here are combination of specifications

and combination of their definition itself so I have just taken this and I have given a name to this

later this is something which we have used you could have used to be valuable here okay.
Which is distinct we do not here about it later something which symbolically immediately let me

I can start reading my specific over that I am going to be but know nothing I could have been

anything there okay so here is a letter specification which says letter is nothing but it consists of

either A or B so all lowercase in all uppercase letters a B okay and similarly all the digits from

zero to nine and nine to five can be specified standards okay.
Similarly if I want to write say unsigned numbers in Pascal then I am saying that I have these so

these are floating point numbers of your numbers I have these digits and so digit is 0 to 9 and

then I define another name which I say is consists of digits at because least modification we can

all use least modification so can long use least modification we can long use 0to 9 I used on new

operator plus which we said that consist of the at least one.
Digits can be empty and then fraction part is going to consist of dot followed by at least one

digits of fraction maybe completely missing in my number and then I may have exponent and

exponent I will have this letter E followed by an optional science and we are saying that the sign

of the exponent could either be plus or minus or it could be missing and if it is missing and these

going to be a reward of reputation and we can that is positive and then if I am using this notation

then I must have at least one digit.
So I cannot have numbers like this is invalid so if I have E I must have at least one day you could

say that one is exponent value or the whole exponent may be missing so that optional I am

putting in epsilon here and then if I want to say number the number is consisting of nothing but

they get followed by a fraction fallowed by exponent so this phase I can keep on developing the

complete set of regular definition for whatever language I have this discuses is this clear to

everyone when you have already done this when you were losing lexis and you already know

that how to special use regular expressions assuming that this is not something which is very new

it's just a matter of rotation will we move ahead.
(Refer Slide Time: 23:25)

So now once we have regular expressions in specifications we also need to worry about

implementation because remember that I can write specifications but somewhere there will be

implementation why is what is the problem so regular expressions they describe almost all the

languages we deal with should put this by the tokens and obviously as I said in many cases they

may not be able to find out what is the exit token and they may pass on information to

subsequent phases but remember that these are only specifications and I still need to worry about

the implementation part okay.
So question now is that what is it that I am trying to implement what is my input to lexical

analyzer lexical analyzer I am saying that our string is and I have a regular expression R and

whether this particular string belongs to the language specified by are this is a question I am

trying to answer why doing lexical analysis of programmers or in the combine okay but if I say

guess solution I mean although this is the basis.
But if I just give an answer which says yes or no okay that is sufficient for our expressions

because we are trying to get it information’s are subsequent say this so if I just say that yes it

belongs to this language okay in between so what do I do with it so what I will say is that I also

want to tokenize it I want to generate information in tokenization is really the implementation

part so goal is not just to give this answer the sunset will tell me whether it is in a radius token Or

not but in more important concepts for me is that I want to partition this in and that is where all

this information about maximal munch and ordering of token success I will come into picture

and the tools we use okay.
(Refer Slide Time: 25:09)

So let us look at how do we write or what is how the I pass and so how do we token so you want

to write regular expressions for lexemes of each token like we have written for numbers and I

give devise okay and then what we do is once I have written all these definitions. I now construct

our which consists of all these so for each like for number, identifiers and so on it I will have

these different regular expressions and using this operator. I am going to construct them large

and now the question I want to ask is my input token is a sequence of characters x1 to xn okay.
And now I want to say that for some value five which is founded by 1 and n I want to check

whether X 1 2 X I belongs to some Errors okay and obviously it will belong to one of these

errors so when I say it belongs to errors what that means is that if you belong to one of these and

I need to find out okay, so I start because this is now saying that I scan my input from left to right

character by character so this is my input and I am looking at now a prefix of this can it be token

can it be a that is the question been answer and therefore I say that if X 1 2 X.
I belongs to a lot what that means is that actually it belongs to one of the large right and for some

value of J and we want to find out that what is that smallest J and that when I say smallest day it

is not in size but is in the order okay, so these are the ones which are coming in certain order and

therefore when it comes to implementation becomes a important that in which order I specify

that regular expressions okay.
So for example yeah coming back to or you already saw in lens okay, suppose I give an order

where I say that keywords will come later than identifiers then they will be what will also be

matched by then identifier but if I say any five keywords will come first what will you do he will

first say that I am going to do this match and only does not matter if this is the longer match

okay, so order becomes ,so different tools are going to give you different way of ordering and

suppose.
Too at all suppose you use a C program okay, that one is the order you will have to think worry

about what kind of order you going to use that becomes a part so remember that this is not some

thing you can just ignore you do not worry about whether you are using tool or whether suppose

you are using a C program assembly language program whatever implementation you want to do

so I can have these specifications.
But implementation is that is something and you going to worry about and when to say that I

have reached the word okay, that is something if you are not cheerful you can just you can just

generate sequence of tokens and again which are in very so then once we have identified that it

belongs to one of these regular expressions what do I do I remove it from input and then I start

tokenizing potato so basically this is saying that I start from in this string.
I find a prefix which becomes a token then I remove that and start looking at the beginning of the

next token all the inputs so I just keep going back so every time I go through the citation I am

generating Porto okay.
(Refer Slide Time: 29:04)

So algorithm normally is priority to tokens Charlie speed ugly so T is a keyword and not an

identifier so if I can counter in it first okay, then I am going to say that this is keyword but how

much input do I use and that is where we say that I want to do and longest match so normally all

lexical and I will say that pick up the longest possible string in the string in the input so here you

will say that when I have something like this okay. I am not just stop here but I did say that go all

the way you can conclude and only when you are not able to consume it from this rule so

suppose after this I have a less than fine.
Then you know that I have not be able to consume this particular symbol in this spoken because

it will not match any of the specifications .I have and then I say this is my word boundary and

this will not be mine okay , so that becomes an implementation so regular expressions they are

going to provide very concise notation and good algorithm requires a single pass I mean I do not

want to have.
(Refer Slide Time: 30:15)

So how do we break up text here are some examples so if I say X is the fine 0 who is I will be

able to break it I may be able to say either this or this but maximal much principle will say that

because this so normally the longest match is the one which is going to win and is the result right

okay, so if you have prefixes and lexical definition basically now consists of regular definitions

priority rules and maximal munch principle so here you can see that here if you have clubbed

everything.
I have not just specification but I also clubbed the implementation would say that order so only

thing you have to worry about in sees something like this right so what is the if I do not lose

maximal munch then will I break it into this or into this if we take any keyword for example if I

if I take this.
I will not reach equal to I start reading from here so I read I then I read F and then I have to take

a decision whether I want to read one more F or I stop there so that is part of your

implementation now if you say that look keep, looking keep consuming something till you hit

about boundary that is saying that go for longest match see my input is staying good where you

specify boundaries is it specifying boundaries for implementation so when I write my regular

definitions is based on their specification.
Where I was saying that in the bottom okay, so question is discussion about how do I specify my

word boundaries so let me go back okay, so let us look at this yes there is set of specifications. I

have four lettered the digit identifiers numbers and I can add more spit one more specification

and let me say that which I say is additional and operator.
(Refer Slide Time: 34:17)

Which I will specify as plus or minus this is my complete this can be my complete specification

for expressions which consists of fighting fires in numbers and of it now where do I specify one

by one . I can also turn one more specification and I can say P word but he word is not really part

of specification that we need part of an identifier and then I have a list of keywords so where do I

specify that I have certain bones so I understand that part saying where is it specified.

So if it cannot be specified but I have to implement a lexical analyzer okay ,where do I capture

this is it part of your specification or part of your implementation if it is popular implementations

then we use social principles and make longest match it is not specified anywhere, so somewhere

now if I go forward once again and take you to last point is summarized in lexical definitions

consists of regular definitions and priority rules and maximal functions a maximal punch is a

principle.
I am using here saying that I want to vote for longest night and that is when I can say that keep

on reading suppose .I did not have maximal punch and ,I replace that by first match then what

will happen so that means your lexical analyzer has to consists of implementation rules as well as

the so let us not worry about harmful to the human maximally that is really not the point yet that

point we completed all I am saying at this point of time is that is when you cross off a lexical

analyzer it is not the sufficient to say that there is a set of regular definitions just go ahead and

implement.
Oka you need to specify something more and that is something mode is that you say that we

always go for longest match or we say that the first specification. I find in that order if I find

something which matches are then I use that rather than trying to exhaust everything in that

sequence that is part of your implementation, so you cannot ignore this part for implementation

of a lexical analyzer that is a only point so not everything is captured just by the definitions this

only says what are the very tokens.
But organized that comes from this part that is there all these boundaries are going to get

captured this point cleared to everyone the decision so in fact I mean this is a very important

point because when you start implementing lexical analyzer in which when you start writing Else

x specifications if you are not careful about the order sudden you will find that token sequence so

internally let us assume certain things let us assume that it will token is Else x specifications.
In the order they occur and it will go for maximal munch now if you are not careful about that

then you can find that the sequence of tokens if you do no t write your specifications correctly in

that order then suddenly you will find that sequence of tokens is different so I can take two set of

specifications chain the order and my sequence of so it is an implementation. I may have the

same set of specifications and if I use a different order of writing that then suddenly you find that

my tokenization happens different.
So do we agree on this can you move ahead okay, so what we want to do now is you want to

slightly move away from regular destination and I want to introduce a new notation because

remember that one thing we were talking about bus we said not only you want to use rules for

implementation but somewhere. I want to do a manual implementation .I want to write not

specifications in regular definitions but I may want to directly write C code for sake off features

but when I am writing C code I do not want to be I think C code in a hexagon manner. I want to

have some systematic way of specifying or some systematic rotation of saying that what are the

kind of tokens are and so for that I introduce transition diagrams think okay if I do not worry

about properties and so on.
I go for if you petition and you find that and I start talking about transition diagram there is

something you have already seen okay, so what we want to do is the regular expressions are

some kind of declarative specifications and transition diagram.
(Refer Slide Time: 40:37)

Is really the implementation part so again, I keep talking about so what we do is transition

diagram really consists of a set of alphabets which belong to Σ and then it consists of set of states

and then, I can have transition from one state to another on certain input and then we have a set

of final state and what we do here is that when I say there is a transition from state one who is

stateless to a state s 1 to state s 2 on a I can say that if I am in state S 1 and input is H and go to

state S 2.
And supposed to be maybe that is on subsequent one yeah so when I reach end or input then we

say that we are in the final state is that except it you will find the Quran talked about is

something finite state machine and otherwise reject.
(Refer Slide Time: 41:38)

So that is on this point if so state. I will use rotation as a circle and final state is going to be to

compare in circles transition is going to be an arrow and then I say that transition from state I to

state J is going to be captured like this and then transition diagrams becomes very easy way of

you specifying my tokens and then going for directly taking me to the implementation.
(Refer Slide Time: 42:02)

Okay so how do we recognize focus what we try to do is we try to now develop transition

diagrams so these kinds of specifications vary. And I have ended my language climb saying that I

have these relational operations I have identifiers so I have numbers are millimeters which are

blind caps over a new line and then, I say I have white spaces which are one or more occurrences

of a delimiter okay.
(Refer Slide Time: 42:29)

And I want to know develop transition diagrams so what we want to do is we want to construct

now a lexical analyzer which will give me this token attribute pair and here I want to go for

manual implementation so I do not want to use regular definitions .I want to sum so let us take

let us start with something and start sort of developing diagrams for this and this background will

end this diagram will then start capturing all the implementation which is done okay so if I want

to deal with identifiers if I am in some state and so if I try to develop.
(Refer Slide Time: 43:14)

Now this condition diagram for identifier time in some states what the first character is. I can see

first connector I can see is only a letter right so if I see in this step. I can only see the letter

invalid that he takes me to the next state and then in this page. I can continue to see either a letter

or a digit okay, so I can have this level which will say I can have a letter or I can see digit and

then I can go to a final state by seeing other let me use okay and what this says is that anything

else which is not a letter or digit will take me to this state.
Which will say final state and in this final state now I want to do something more because I am

talking of implementation of what is what all the things I am doing in this final state I want to

now return a token and let you do it so what is the token here. I am going to return it is an

identifier right so I will say that my token is ID and what is the attribute here so if this texting

has been identified okay, then I am going to put this information in the symbol table or it was

already.
In the symbol table then I just need to have a pointer but it should be pointed to simple table

corresponding to this Lexal but then I need to do something more and what is that something

more so I have identified. I have written this pair but what else do I do so we have consumed one

extra character okay. I must specify somewhere that this extra character must be returned back

into the income streams so I just put a rotation here so you can see that what I am talking about is

non-implementation rotation therefore.
I did not say that this finite machine and so whether it is capturing all the implementation detail

you say yeah so here I say that this will remind you of saying that the last character which you

have consumed here must be returned back to the inputs ,so this becomes your specification for

implementation off if I try to do let us say for a relational operation now what will happen in

relational operation.
(Refer Slide Time: 45:43)

So I being some start State okay, so let us look at for the just possible so if I just say my relops e

so in this page what can I see so does not matter whether , I am trying to match this token or this

token. I will always be less than and that will take me to a new state and this new state either .I

can see an equal or I can see something else now if I see equal okay, do I need to look at more

now suppose I do not have anything more in my specifications just that I am saying that this

what I match and therefore I can reach a final stage and then.
I can say that return now read off and let us say less than equal to a but I do not have to return

anything but if I reach this as a final state then I am saying that I have matched realm oh I have

less than and then I must return and then if I just am bitch the whole thing if I say that I can see

say it let us say this also okay ,then what will happen so in this state I could have had other label

which would have said and then as soon as I say greater than sign definition of these other

changes so this other is all symbols.

Which are not so all symbols minus symbols on all of the labels so this definition of other if I did

not have this edge then this was Σ minus equal but as soon as I add this edge they say this is Σ

minus equal and then this will immediately say that what I have seen here, so this is not equal to

so now I say that I am saying that this is this and that will give me the full specification okay so

once we have this I can once you have understood this part.
(Refer Slide Time: 48:20)

I can take you to transition diagram so for relops okay, this can be one part of the transition

diagram which says greater than equal and this will just say that, I token is real of them is greater

than equal to or I can also say that the spoken is lexeme could be this and many times what you

will find is that it may have additional specification by saying this is greater than okay but as

soon as I say this is greater than equal that is sufficient to say and other will take me to this

specification but in this case.
I will also have to return something with this right so let me just finish this Foundation diagram

and then we can break and for the second part if I am now trying to capture everything if I say

this is less than then immediately. I know that I have reached the final state and by because

whenever I consume other I must return it to the input stream and when I say this is less than

equal then it is saying that I am reaching now this final state.
But I am not returning anything but if I say greater than then I am reaching another final state

and again I am not returning anything okay , and if I much if I takes all the relational operations

then I in this state in the start state. I can not only see less than but I can also see greater than

which really is this transition diagram so it will get captured here okay it and in the start state I

can also see equal which is here.

(Refer Slide Time: 49:49)

Sorry just too fast yeah, so if I see equal then immediately I know that I am reaching in this

particular state and I am just not in equal so you can see that this becomes now your

implementation specification for relational operation so next we will finish toady and we will

meet in the afternoon at 4.30 okay.
Acknowledgment

Ministry of Human Resources & Development
Prof. Phalguni Gupta

Co-ordinator, NPTEL IIT Kanpur
Satyaki Roy

Co Co-ordinator, NPTEL IIT Kanpur
Camera

Ram Chandra
Dilip Tripathi
Padam Shukla

Manoj Shrivastava
Sanjay Mishtra

Editing
Ashish Singh
Badal Pradhan
Tapobrata Das

Shuubham Rawat
Shikha Gupta

Pradeep Kumar
K.K Mishra

Jai Singh
Sweety Kanaujia
Aradhana Singh

Sweta

Preeti Sachan
Ashutosh Gairola

Dilip Katiyar
Ashutosh Kumar

Light& Sound
Sharwan
Hari Ram

Production Crew
Bhadra Rao

Puneet Kumar Bajpai
Priyanka Singh

Office
Lalty Dutta

Ajay Kanaujia
Shivendra Kumar Tiwari

Saurabh Shukla
Direction
Sanjay Pal

Production Manager
Bharat Lal

an IIT Kanpur Production
@Copyright reserved

