
Indian Institute of Technology
Kanpur
NP-TEL

National Programme
on

Technology Enhanced Learning
Course Title

Compiler Design
Lecture-13

by…
Prof. S.K. Aggarwal.
Dept. of Computer Science and Engineering.
So let me start looking at situation where I will not even do a wrong thing on the parser an on

that scaling take care of the situation and order is in the order of first and if I say c*d which is not

in the language the parser declares an error where I will not do a wrong shift in the errors

canonical LR parser never makes a wrong shift or reduce move and it immediately that is an

error this is the most powerful parser method problem was that parser table has a large number of
States.
Then we start looking at the LALR Parse table now LLR word comes from Lucre headily but

this is the name which was given to it historically this is what we follow this has not been

explained in literature then what I the difference here o what we do here is we look at similar

looking states and when we say similar what that means is the states which have the same kernel

but different look ahead in the set of LR(1) item and then we try to merge them.
So for example when we had a I4 and I7 where the kernel was the same which said C goes to d.

and look the look ahead in this case was c d and in this case of was $ and if we merge it we are

going to replace both 4 and 7 by let us say a new state I47 what does it consist of now it consists

of same kernel and with the head of c d. And similarly we say that I3 and I6 and similarly I8 and I9

form pairs and if we merge all the LR(1) items only the bundle will be the same but look ahead

will be different .
And then we start at a discussion saying that if I now construct LALR parse table what will be

the size of this and size is going to be same as the LR table so the question that came was will it

be having the same power as the LR or will it be more power that is what we will be discussing

and turns out to be if e can do it by construction of languages and the languages which are not in

SLR which are in LAL turns out to be more powerful than SLAR so when we construct LAL

parse table is that.

 So this is a longer step that first being construct all sets of LR(1) this is the step we went find

that all sets having the same core and replace these sets by their union and we I do that then now

I am going to get a set LR(1) items which will be of the form which says J 0=Jm after the system

of merging say that for each core and once we do this we construct the parse table a earlier there

is no difference so the only thing happened now is that earlier you had multiple rows for the

common kernel .
 But different look ahead and now I have the same rule so what is the implication on this so j

each of these J’s I actually a union of verification of knowledge that I have compact parse tables

now at the same time I have little less power o in fact we can again find examples again which

are which is in canonical LR and which are not in LAL and say something which is in canonical

LR and not in LALR what does that mean in terms of the parse table .
 And so when we first look at the SLR table we said that a grammar is going to be essential SLR

and what was the condition if it does not have in the parse table and then we went to canonical

LR and if there is a language is in Canonical LR and is not in LALR after this merger what does

it means in terms of conflict it can have multiple in the table but kind of nds these will be will it

be shift reduce or reduce can I have shift use .
And conflict LALR if the grammar was in Canonical LR okay so why is that so the only thing

that can happen is that when I merge these table or states it cannot give rise to a shift and the

argument is very simple if there is a shift reduce conflict in LALR then that conflict must have

conflict in canonical LR that means the grammar was not itself in the canonical LR so if the

grammar is in canonical LR then the shift it can give rise to only reduce conflict okay so

definitely there are language like this .
 So since they have the same quote so go to of GX the X values are grammar symbol will also

have a same rule so this is coming from construction so this is how we construct and this is how

LALR parse table is going to be so what I have done is I have replaced states 3 and 6 by a state

symbol called 36 and 4 and 7 by the state symbol 47 and 8 and 9 by state symbol as 89 so it has 3

states this is exactly the same number of states as far as SLR and this is exactly the exactly the

same number of states as far as SLR a parse table but they actually will be different because we

have more entries .
So let us not even compare unless we construct the method of parser only thing we can assert at

this point of time is that the number of states are going to be exactly the same so again looking at

some of the properties of LALR parser if I now look at this reduction what is going to happen

now that I have now C * D C * D is my language and suppose I came only please start what will

happen in case of LALR parse table .
Suppose by equal to a let LALR parse table is C * D there will attach there so if you keep on

saying that C *d will get reduce to capital C and then you can see a dollar but since this is the

first capital C you will still not be able to accept it because I still have a rule which says as close

to C or s goes to a so it is not accept but it will now move additional shifts but before for the

reduction and we kept it there .
So this is what happens here so in general core is a set of LR(0) items and LR (1) grammar will

produce more than one set of items for the same core and merging this never produces shift

reduce conflicts but may produce reduce or reduce conflicts and SLR and LALR parser have the

same number of states continuing on this discussion so merging the result into conflicts in the

LALR and these conflicts are reduced reduce conflicts.
 So here is a small argument which says that why I cannot have I should reduce conflict so shift

reduce conflict will come only if I have LALR parser with item which say of this form it says X

goes to α .and this says y goes to α β. b with a look ahead of me what is happening then that in

this case I am ready for reduction and in this case I am saying that I can shift now if I have such

an alarm on item in LALR parse table then they must have in some state from where I arrived in

this state.
 So similar conflict must have existed in the earlier state and before and therefore I do not have

any kind of shift reduce conflict but if I look at the situation and I had states like X
 α. on a look ahead of A and y goes to α. look ahead of A and after merger I am going to produce

a state like this and this state has a reduce conflict earlier this conflict did not exist this happens

when I construct LALR parse table .
The only thing is that these methods are more complex and they are direct, complicated and they

are efficient algorithms to develop LALR parsers and normally a tool which constructs a parse

table and if I look at relative powers then SLR (1) is less powerful than LALR(1) and that is still

less powerful than LR(1) and if I look ahead if I have a look ahead of K then the same thing

applies that for a fixed set of SLR (1)is still going to be less powerful than canonical LALR .
So languages which can be passed by this particular parser cannot be passed by this and similarly

LL (K) is less powerful than LR(k) and why LL(K) is less powerful than LR(K) compared to a

lot left but we move so left recursion is no longer an issue so think about it in general argument

is that if I am looking at LL parse table or I am trying to do countdown parsing then what

information do I have a symbol which I want to expand and I have table effects based on that I

take a decision what do I have in case of LR and in LR I have the full stack information my state

information captures whatever I have seen which in case of LLR is not possible in case of LL

what we are saying is that this the grammar symbol I want to expand here so which in case of LL

is not possible we are saying whatever I have seen that extra information I have so that I more

power in an LLR and in general programming languages most programming languages actually

fall in this class LALR .
So when you look at tool like parser what you are generating is LALR parser and not a canonical

parser and there are parser generators which are available but for canonical LLR for all practical

problems as LLR is sufficient as far as programming language is concerned and again how do I

do in generally LLR parsers so think about it .
(Refer Slide Time: 14:01)

So let me draw the figure for you let me think about this that suppose this is my stack and I have

now state s and I have a look ahead let us say a and now when I refer to my parse table that find

that s a is error free how will i recover from this so how can I continue parsing suppose I reach

this configuration so if I say that I skip some tokens here and reach let us say here a symbol B on

which I can find an action here what happens in that case cannot be contacted because what you

are saying is valid because if I look at by parse table.
 I am saying that from this point onwards I can continue important okay so let me give you an

example let me write a piece of program suppose I a=b+c then p=qr and x=y+z so what is

missing here is the plus symbol so I reach some state where I have seen this I have seen this part

then I am expecting to see an operator but what I see is an identifier okay so I say I could have

done continued parsing on an operator right .

 So I say skip this skip this skip and I reach here and I have skipped all this does that make sense

yeah very good so how do I do that so solution that has been provided is that is being proposed is

that if I skip everything up to semicolon okay and then continue parsing from here then I will be

good right but how do I now do that in terms of the parser so assuming that this is a correct

solution now I explain that in term of the parse table okay so let me try to articulate what you are

saying that imagine that there is no error here but suppose there is no error here then this would

have reduced to same statement so there is some state here followed by a statement then this

whole thing would have reduced.
 So what we try to do is try to create a situation where as we say let us skip this till the end and

suppose I say that statement is the symbol I want to skip till the end of this then I say that

whatever is the symbol now so I have to now do two manipulations one that I keep going down

into the state so first I identify certain markers and what are these certain markers so for example

steps into the market and I say that in case I am parsing a statement.
 And I find when I just keep everything up to the end of the statement yes that means I basically

saying that when I skip everything up to the end of the statement okay I will assume that I have

known all these errors and as if this error never existed. so that means first I have to go down and

find state corresponding to this okay and then once I have discarded all these symbols change

then in this state then I push statement.
 And then that will give me a very good right then I will be able to find in my parse table and

once I have reached this then what do I do I say skip everything up to the end of the statement

that means spot scanning my input skip everything up to semicolon and once I reach here so

what we do is that another parser always defines what are the symbols if you want to

synchronize and on which you want to do error and so you can say that when it comes to end of

statement it is one thing that .
You can define block and of function choice is up to the parser builder this is going to be the

granularity so if you want to be through the level of some expression that can become very

complex so normally what is done is we try to find certain blocks where we say that if an error

occurs then I will skip up to end of that block and if I skip up to end of that block in terms of

parser I say that on stacks find a state.
 Which has a valid go to on that particular symbol then pop everything up to that state push this

symbol do a go to skipping input till you have reached end of that statement and continue parsing

right so this is what will happen that if I say that there is an error I say skip this whole thing skip

it up to semicolon and therefore, I will start scanning mind discard all these symbols then I try to

continue parsing from here on the step I will pop symbols which will be taking me to this state

then I push the non-terminal is can sat that whenever a function I start everything on the function

in so normally this is capture at the level of a statement okay.
So aratibacally is if you detect an error when the action table is found to be empty so this for

panic mode .I will double you scan down the stack until you have a state with a go to one a

particular non terminal.
(Refer Slide Time: 20:54)

A and then the start 0.
(Refer Slide Time: 20:57)

Error input symbol until you find a symbol which is which form of a and then stack the state this

state obviously by pushing A symbol and then part okay what this is and one is the choice of a

normally these are some non terminals which represented major programs so for example it

could be stacks it could be a block it could be a function ,so you have to take a procedure as

parser to parts of the what the error become which are going to do.
So most parsers will say that I want to go every recovery at the level of the state then you write

this part everything here both in terms of concept as well understand input okay, so now we have

some parser generators we do not really write parsers by hand so the interest and parsers well

generally and what we have our parts of the knitted yak is one bison is a little which is really

common and these are really.
(Refer Slide Time: 22:12)

Source specifications are LALR grammars you will write grammars in LALR then we will be

able to generate 10 parsers for this and the format just to refresh your memories and we have

declarations ordered by two special symbols ordered by all the transition rules and followed by

all the series this is how the structure of specification.
(Refer Slide Time: 22:36)

And if I look at block diagram block diagram goes now you can see that I am using Lex and get

together YACC is generating this file called Y.N.C in which I have to do X.YY.C which has been

generating form of and then when I use the native C compiler to compile this 5 it is me an

executable which can take any program and we mean and parsing expect syntax tree in every 10

sec syntax tree you will have to write certain actions but in general it will be able to say whether

this thing and also one important thing to remember here is from his limitation point of view that

is a viral brail Y.C okay, it is a fine variable it will just again this 5 we will that YY0 you turn that

as to one that you find that and you try to generate parcels and γ an error maybe give you a lot of

people.
So this variable can used way we can turn on the debugging and can get all the sad information

that means every time you see a symbol what is being pushed what is being taught what is being

reduced all the different information is not coming oh that literally can also help you in

understanding how your parser is working and if case something is going wrong so this is where

we will close about discussion.
(Refer Slide Time: 24:10)

On R sin and there is a reading assignment and finish this assignment before you are mixing

exam it will be helpful basically look at book by a whole and safety Pullman chapters 1 to 4 but

you can skip sections 3.6 to 3.9 which basically say although I can generate the finite state

machine of regular expressions how do I generates non-deterministic finite automata how you do

that I might inform which I am sure we can go back next are taking into your business 0 but it

will be helpful if you all this before you make sense.
So this is where my close discussion on parsing and you move on to that any questions anything

down bottom whatever questions comments you may have can you move on back in timing

checking yeah so LALR 2 is more powerful we can go to any number of state one that we do not

have tools second that most languages require they force LALR what is sufficient most of the

program there may be languages it cannot be parsing so when we go into those who natural

language processing they look at all those techniques as far as programming language processing

is concerned in a rush anything else. So then let us move on to spell checking so we also here is

for example.
(Refer Slide Time: 27:05)

What is time to do in this semantic analysis this coil is again coming from what we had in the

introduction okay so now we want to check the meaning of the program and also we want to

report on the errors we also want to listen operator okay so here is question example I do not

have example of overloading but we discuss overloading we found that that will be operator

which depending upon or different meaning we want to exactly find out what are the overloading

operators what are the overloaded functions.
Because some languages in the overloaded functions than it want to do type in case your

expression can terminate different types we want to type the and going to checking control

checking is says that ,I cannot jump into middle control zone so I want uniqueness step in saying

that all my variables context are going to have a unique meaning or unique name a name check

so sometimes drops may require that the begin block and block we have it for me and that name

has to be same and so on.
If but this list in no way is exhaustive ID is actually language dependent so depending on the

language what I know I taken you want to write list of types so this is something which is

beyond the syntax analysis and obviously what we are trying to do here is it was not possible

something looking at the context free grammar formalism.
(Refer Slide Time: 28:50)

So syntax analysis was all based on context-free grammars and we want to know look at some

errors ,which are deeper than for syntax analysis so this when I look at programs and I look at

programming languages and we talk about you I am going to body part. I am still into the

language definition there are some issues which are deeper than the syntax so I never get

something in syntax and compact syntax analyzer always accepts a superset of the language what

we are trying to do now is we are trying to narrow it down to saying that whether it is sticking to

the semantics of the language are defined okay.
 So some language features cannot be modeled using context-free grammar formulas okay, and

one of the very common features will find out if I want to check whether an identifier has been

declared before use . I cannot model context-free grammar will look something like this ww-Σ

stack where and this is something which is not check.
(Refer Slide Time: 29:54)

So beyond syntax here are now complete examples so suppose we say that I have a string X and

string Y and then I write an expression which says X is sine Y is a sin X + B now clearly you can

see that there is a type error here if I do not permit this addition on string a name okay but ,when

I parse this if this is not an error because all it is saying is as far as parsing rules are concerned

that right hand side is an expression that fin side is available that should define okay.
Acknowledgment

Ministry of Human Resources & Development
Prof. Phalguni Gupta

Co-ordinator, NPTEL IIT Kanpur
Satyaki Roy

Co Co-ordinator, NPTEL IIT Kanpur
Camera

Ram Chandra
Dilip Tripathi
Padam Shukla

Manoj Shrivastava
Sanjay Mishtra

Editing
Ashish Singh
Badal Pradhan
Tapobrata Das

Shuubham Rawat
Shikha Gupta

Pradeep Kumar
K.K Mishra

Jai Singh
Sweety Kanaujia
Aradhana Singh

Sweta

Preeti Sachan
Ashutosh Gairola

Dilip Katiyar
Ashutosh Kumar

Light& Sound
Sharwan
Hari Ram

Production Crew
Bhadra Rao

Puneet Kumar Bajpai
Priyanka Singh

Office
Lalty Dutta

Ajay Kanaujia
Shivendra Kumar Tiwari

Saurabh Shukla
Direction
Sanjay Pal

Production Manager
Bharat Lal

an IIT Kanpur Production
@Copyright reserved

