
Computer Architecture

Prof. Mainak Chaudhuri

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

Lecture - 33

Case study: Alpha 21264

(Refer Slide Time: 00:38)

So, today we will talk about one of the last two processors that compacter, so last one

was 21364. So, this one was before this ((Refer Time: 00:28)) 21464 was in designed an

totally we will talking little bit about 464 also if we get time.

(Refer Slide Time: 00:47)

So, again just ((Refer Time: 00:50)) like its fix it, so anyway, so again just like R10k and

the first silicon. So, it have the 15 million transistors for a 310 millimeter ((Refer Time:

01:20)). So, if you go back look at a mids or it have a die sized above 290 will display

number of transistors was about 6 million, you can see that this also reflex the of the

designers it would. So, many which at the same transistors size just like which is because

for instructions every designed to the pipeline was taken from predecessor 2164. And

essentially the out of order mechanisms such as remaining, etcetera. The basic pipeline

verses borrowed from the producer which around 664 kilobyte two ways instruction data

caches and off chip direct mapped L2 cache with variable size. So, again vary from 1

megabyte to 16 mega byte.

(Refer Slide Time: 02:35)

So, if stages a 4 pre-decoded instructions from instruction cache. So, to entry return

address stack is a, so this processor introduced new feature that is Line and way

prediction. So, is essentially proper use will be instruction cache, so work is a block for

each block a four instruction the line predictors tells you which index to fetch from next

and the starting block of set in that index.

(Refer Slide Time: 03:15)

Thus essentially let us say this is my instruction cache, which as a two ways curriculum

on fetching from this curriculum cache in discuss in this next this way alright. And there

a as the line predictor were are next points alright say essentially you just a predictor,

which predicts well you say that well say in index next for instruction. So, that is what

we should most of the time, however if one of these instruction is a branch instruction it

would tell you the targets.

This is the next line different to line to, so that is a new feature the way predictor tells

you which of the two ways to pick. So, at this index you have two possibilities right, so

therefore this one or this one. So, the weight rate is of this the, so prediction is correct if

provides a fast way to access a large to way set associative cache. So, otherwise the

found that it was pretty much will possible to access for 64 kilobyte two way cache and

forever frequency the process was targeting.

It has essentially here if you we will have avoid the time to effects completely to avoid

the among time to you comparison of target with the we just ask the which line. But, off

course if background we have to continue feedback other think we look of the index pre

decoded index look of both the tax comparison find out the which way in the correct

form. And if you predicted correctly then foreign otherwise the cancel whatever in fetch

next in the predictor and in.

So, in also in act as a target predictor for unconditional branches subroutine calls and

other predictable branches and say is a essentially in predict in scheduled instruction is a

concept sophisticated branch predictor from. So, the 2 and 64 pipeline at the 7 cycle

branch penalty is the minimum time between prediction and branch execution. So, a this

is not larger then you will which at a most of the time.

So, this is a hybrid branch predictor called tournament the basic idea is to have two

different types of predictors. That are good at predicting different classes of branches

have a third meta predictor also called chooser a. That decides which of the two predictor

to pick for each branch based on dynamic history if all this predictor class with if already

advanced. So, this pick the predictor that is go back predicting a particular branch class.

(Refer Slide Time: 06:35)

So, what is the what is the two components, so which actually use the SA g and the GA g

with the Binadel linear predictor if you a go back in SA g and g share. So, one interesting

thing that that act that 216 a deep was technique after the. So, if a recall a you know GA

g predictors has a global history register. So, it 216 bits is a index is a table of 4096

entries 2 bits which. So, a so they always get ((Refer Time: 07:31)) and the this thousand

of the GA g. So, a if which is look at the GA g isolation the problem is that the second

cycle vacancy need prediction to the correct of the. So, it is create that your global

history in lack in behind the correct because take a branch to statistic if between take a

branches again that actually access her stage nature took that. So, one way to avoid this

act is that you believable on which ever that forever the creditors we have the in that is in

my history.

That is on speculating of credit of the global intricate and a what it by you SA g GHR is

most of can one put way to by in the credit ion actual see that took otherwise off course

quality is GHR. But, off course possible your predict the will make its when a process

how many fixed design product. So, already sack as you on all mentioned for any way

for go in back register map you will make a check when your my secures. So, you make

these 12 bits of part of the check when ever in take the branch explanation to.

So, a in case of correct prediction there is no bubble and 216 for supports 20 in flight

branches. So, after that in for in case of, so this means in the higher prediction and

because it say that these are we have how that we say that we can have we can have

allow in one half in the second that you are prediction of a index. If you planning how

can you if a we will come out 0.97 0.98 our language, because similarly to way sells of

this curriculum in. Otherwise we solve this soon direct me the directly that most like to if

we called below that.

(Refer Slide Time: 10:12)

The second stage called slot, so the branch prediction outcome is compared against the

line and way prediction outcome for conditional branches and in case of a mismatch the

branch predictor over rides. And results the line way prediction and results the one cycle

bubble. So, in which particular fetched believe the, so that is that is that is the first thing

that you do this in the stage. Now, the 21264 has two integer ALU clusters and each

cluster has two sub clusters looking about details about sub clusters we assume. The

point is that during this particular stage basically instructions are statistically assigned to

one of the two sub clusters based on ((Refer Time: 11:05)).

So, essentially you are saying that a statically by an instruction to particulars of a in that

the what happens is that if you did diagonal index one of the such, finally the statistic

assigned of the actually be see the some ways. And other ways of the actually be and the

statically designed the sub clusters and say the. So, statically designed that is way the

designed main for of this stage this static what it instructions which that it is ok. So, this

sub clusters assignment will be used by the integer issue logic later for set you structure

for the a proper purpose.

(Refer Slide Time: 11:56)

Third stage in the rename, so physically interesting quit with rename is fundamentally

different on the way in have talk about in the class and see within your part and teach

about. So, suppose up to 80 physical registers in integer register file and 72 floating point

register file on every instruction the register map is saved. So, this provides different

flexibility to because map is save at for every instruction of facilities more that if subject

point of you register map. But, this also if that of you registers the point should not to be

heavy should be the because essentially a. So, provides 80 register map check point

essentially around the 80 instructions. So, that, so to same 80 points we should on

required not in stage. So, completely different implementation compared to R10k. So,

next on the look at that will be actually more actually in board.

(Refer Slide Time: 13:07)

So, recall that whatever we have discussed till now and also what in that we have n

logical registers we have a log table which is at a increased by and we have if you of p

physical registers each at would be log 2 p plus 1. So, this extra this total alright, so if

you will calculate for 80 registers check points. So, by which before 80 byte as usual and

b, so will very activate. So, in this case how much this in check the 80 alright you will

able to. So, want check point is to 52 bits we are the every check points, so that is allots a

data to need.

(Refer Slide Time: 14:36)

So, instead of this what we will do is, so they have a p entry table a p physical registers

and each entry is log n plus 1 this point look at alright. Say again this particular begins of

the have in, so this is line then ((Refer Time: 15:04)). So, how ((Refer Time: 15:09))

whatever you get logical register you make a full register compatible alright have exactly

have a inter back and that when see whatever at the p that is the role number of that is to

be the physical registered.

So, which one is better, so roughly computing n log p with p log n which was better we

can ((Refer Time: 15:49)) we can actual that p is bigger than n. Then solve this and a

established in a what is correct which was clear one example for each p n is bigger than n

p to if you take p equal to 3 n equal to 2 correct, p equal to 4 n equal to 3 say that is a.

But, any way for this designed point you can establish an electron one of the should be,

so in this case calculate. But, I think this is in a large for make in that establish what it

make what is equal result how will checks for you this in the dynamic table in the bits

forever this, so we can calculated that is n equal 32.

So, the continue on 480 bits for in exists to right at p because each entry is equal to p 6

bits I do comparison associative comparison with all entries it is a CAM not a DAM does

not is the is 80 bits the bits see it have a large a active. So, for 80 check point if you

decide to check point is countable. So, in which a check points say this way of check

point the this also way for how to why how to not will be check point is that easy have to

at a taken it is enough to say needs that is all. So, thing of a instruction right correctly

short of things of mat how get will the to logical registers cannot have.

So, I behind article register cannot make multiple existing maps right, so that would be

only n. Then the that it alright see that look at this particular column as final there

exactly n the remaining with that a. So, currently whatever is batch, so we have logical

registers there map is a 10 physical registers alright the until this instruction become is if

at pick up any this currently allocated physical registers it will see have this same

designed an which. So, look at extraordinary which is a alright.

So, this particular some logical instruct here as a is a correspondence physical in this

map why does this map get feet on the same logical instruct get is need defined alright

defined that the instruction in the step this map. So, instruction the new map actually

alright, so new map does not exists that this point alright it is in the feature. So, of the

pick point the current instruction when it graduates the claim that all this map 6 bits

energies. Now, the physical registers in a bit if you at look at the any of the map physical

registered that will only for the next producer branch that is an as idea features that then

why did why 6 particular logical register here we should map.

So, currently an looking at only the most recent producer of each at the logical register in

this map there that is a that is alright and that will talk what will change that and in this

particular instruction graduates and will not to be change and the particular change. So, a

change that if a check point to very big it is a lot see back taken our which on

introduction which on is check point map following two step copy the. That is it for the

balancing column is a exactly 10 bits form which ever activated essentially take ever

would map instructions. What will would from a main logical registers a main logical

registers that is right it will map to physical registers.

So, that is wants to say, so possible instruction which a predictor this is a stage currently

it has some way this point if the column. So, was I saying that is in features at any point

in time before this instruction gadgets if you want all take the register map back to back

instruction in the is adopt just copy the column what it was at that change right.

So, talking about remaining current instruction time the talking about instruction before

the this I line which property which is already which is already remaining and whatever

give of the map in time producing already take. So, without what happens I 12 to this

more instructions. So, is right I 1, I 5 produced registered who says some logical

registered in what the previous back was p one series right. So, I unless suppose by in

between there was more instruction produced by. So, I is details we not say will not

right.

So, the point this you can just point this what there are you make if an a became biggest

size fully for you instructed for a check point become where it take subject point form

when will to commit of I how could the checks it is there are instructions. Now, of the

registers which map a this point cannot be speech they will remaining take it a that is

what I am exploiting to argue that which is want to go back to the check point this

particulars stage you this copy the dynamic copy on is a that.

The enthusiasm is that for a story 80 checkpoints in we meet 6400 weeks 80. So, after

the larger than the you are beat the certain check found because attitude was happening

only two checks founds which is equal to how it is perfect. But, if it did not having 80

checks found in huge any questions ask here. So, actually that go recycling construction

right recycling application like I would said example I choice the which is logical

register in law to be assigned in the.

So, if I go the row of p which is like a this one basically this is p 1 if you say not here

and b to be not right yes. So, previous we did not find this is like a, so q not pie you loses

did not. But, this will be loosed yes you are first, so I cannot commits to recycle

phenomenon could not acting that. So, considered for it is a considered I, so before you

make this change to a check point good form right. So, if I want to roll that this will and

actually, so that copy the. So, that check point is it because of only after age because its

new plan, so valid beat follow up exactly following through for of course.

It will say that after I has committed after that for a I, now want to look that to has not

because register back to, now have been change you got that is the not. So, much more

efficient register map saving and restoring hardware.

Sir because saving that mono of complaining that amplification what we happen is the on

your pipe line depending on how system is on service fast. So, this will the love into the

actually support any extension for each instruction if you exhaust for. So, it is arrives

into now technician extension in process seven it will happen in a letter you can notified

save natural. Although you can check point all this I do not allow into check from

branches you only. So, possible to restore register map at any arbitrary instruction in a

single cycle not just branches, so a if there is stage every instruction also assigned a

reorder buffer entry. And this serves the purpose same purpose as the active list just a

different name, but not bigger. So, active list solve to agrees is eighty entries, so the arise

if you have 80 kind instructions.

(Refer Slide Time: 31:23)

Each instruction is also assigned to one of the two issue queues. So, there are essential

two queues one is integer queues another one is cubic point queue. Integer queues holds

all ALU and load store instructions essentially all instructions that need to read the

integer register file. So, load is the different queues for load second one floating point

queues holds all FPU and floating point store instructions. So, essentially these are all

instructions that need to read the floating point register file.

So, there is a slight problem with floating point four which has they we to reach extra file

floating for critical. So, say that to be instruction in the floating point queues, but for

address. So, floating point are special need to read both integer file for operand and

floating point file or data operand. So, they are split into two separate instructions

namely address part goes to integer queue loads to instruction queues for loads. So, there

here queues the defining task for each floats.

(Refer Slide Time: 32:58)

However, issue that 20-entry integer queue can issue at most 4 instructions every cycle

out of order to the pre assigned ALU sub clusters, so we have already talked that at the

start part 15 entry floating point queue issue at most 2 instructions every cycle out of

order. So, I think that issue the sequence, because one requirement is that whatever is

present in the queue there must be maintained according to the image that is very

important. Because that would guaranty is essentially in the cycle if there are multiple

instructions are become ready the older instruction.

The issued load instructions are now allocated in a 32 entry load queue and stay until

retirement. So, most they you have a issued from the integer queue they stay another the

store instruction go to a 32 entry store queue. The store queue entries are wider than load

queue entries to be able to hold up to 64 bit of store data if for that data base store to cash

in that. So, the thick of the load and the store queues as two parts of the R10k address

queue with one major difference the load instructions are now executed out of order

which was not is integer queue to said does not instructions.

(Refer Slide Time: 34:54)

Stage 5 started operand read the integer ALU cluster has its own copy of the register file

with I a register file these are kept coherent you a one cycle inter cluster transfer bus. So,

if look at there are two way to clusters at these stage each ALU clusters has its own copy

of the integer part. So, that right it has what cluster if have exam, so a one cycle inter

cluster transfer bus if a single cycle if an actually break it for him which actually has

simplication. Because know what it each is that suppose say in the instruction producer

register 10 with cluster1 want and is the instruction which consumes register 10 to

cluster 2. So, this cluster 2 instruction give before this what side to make your cluster.

So, a the was what enough actually to puts instructions belong to the same depend the

stage the same the instructed which an out as per one cycle because it happen what we

happen is that one bus may be become very crowd. So, a scheduled the there scheduled

the takes care mis, so they issued integer instructions read their source operands from the

respective cluster registers file. The floating point instructions read their operands the

floating point register file the next cycle. The operand values may be over by the

bypassed values if needed. So, this is the traditional bypassed want yeah very good yes

very good question why do why do the like.

So, in this case stage does not matter, so say think aborted that to a suppose that the

clusters. So, then if a look at each of these registers point right they we have some

number of points right which a we find the number of added right that is so on. So, what

a form to as that is what side to penalty was formatted the registered they essential that

the scheduled your required this particulars one cycle transfer two people make sure that

the value the instructions depend the instructions get related to...

(Refer Slide Time: 37:50)

So, from stage six onwards.

(Refer Slide Time: 37:56)

The execute on the appropriate functional units the two integer clusters are not exactly

symmetric each cluster is divided into an upper sub cluster. And that is L 0 U 0 in the

reverse of clusters L 0 L 1 essentially the alright ALU 0 is ALU 1 the lower sub cluster

are identical. And each contains logic units one adder and a load store virtual address

calculator, so that is your... So, your logic we have added you see of the contains an

integer multiplier a shift unit a branch unit logic units and an integer adder. So, that is a

your use an you want is identical to U 0 except it does not have the multiplier. But, has a

motion video unit and special arithmetic instructions to like population count may be use

an count etc.

So, this particular instructions pop count counts a number of wants a particular alright

and basic 0 count is essentially does not how many 0 a there on the. So, all the see over

all what you get is one multiplier there are four logic units because all sub clusters have

more which there are three adders sorry four adders and two branch units two shifters

and two upper sub clusters.

(Refer Slide Time: 40:25)

The floating point unit, so there are four in number whatever things a fully pipelined

multiplier a fully pipelined adder an unpipelined divider an unpipelined square rooter.

So, by a more this that there is only to an divider the actually you this one.

(Refer Slide Time: 40:52)

.

The load store unit load store instructions calculate their virtual in L 0 or L 1 the issue

out of order from integer queue as already mentioned at this time they are also placed in

either the load queue. The store queue these two queues are maintained in order I e older

instructions are closer to the head. So, such a essentiated what it means that was you puts

sub thing a load out of order they can will put in the load.

So, loads may execute out of order stores execute in order it is a store issues it checks all

the instructions in the load queue that are after it in program in the program order and in

case of an address conflict meaning. The load has probably got a wrong value it initiates

a squash starting from the offending load and are fetch is started from the offending load.

So, need to restore register maps, so this all the discuss for away you right to that check

point is register map.

(Refer Slide Time: 42:23)

So, minimize the possible squashes due to out of order load issue the processor uses a

load wait in. So, load this table is indexed by the load program and it tells the issue unit

whether to hold the load back unit all stores before it have issued and how to a decide

this table is updated whenever a load gets squashed due to a store conflict. So, that in

future the load will be held back and will not be issued speculatively. So, it is very

simple taking is identify load instructions that a they would be complicit load will be

held back and will not be speculatively.

So, every issuing load checks all instructions in the store queue before it and in case of

perfect match it simply picks up the store value. And does not even access the cache its

do not for an this in the load all instructions in the store queue before it in R10k we

talked about load hit speculation in connection with issuing load dependents that is right.

So, say that will be issue of dependent upon the speculated without only with 10k always

optimistically speculates that the load will hit is right always the speculation. And if it

misses we will have to squash the dependent and re issue it later when the load value is

available.

We could have issued an independent instruction in that issue cycle if we knew that this

load would miss. So, if could have essentially one issue cycle is wasted if the load

misses. So, a 21264 uses a load hit miss predictor when a load issues it predicts using a

table based on the history whether it is going to hit or miss this time just like branch

predictor tells you taken or not taken. So, it is the final predict hit on the prediction is hit

it is a predictions take them only the issues of the make held issued different of its

predictors.

(Refer Slide Time: 44:57)

So, a last stage of the pipeline retirement and commit 21264 commits at least 8

instructions every cycle under certain situations it can sustain a retirement rate of up to

11 instructions for a short period. So, in this while is my retirement rate both than my

cycle and saying the title sustain of the 11 instructions there which cycle they always at

those not sure at the. So, will you have brought they exists lots of other resources, so

these are essentially you know copy for instructions the just are pollutes. So, the soon are

you late the, so which instructions comes were the each can considered for if update the

branch creditor which pick the registers copy for instructions.

So, remember that every instructions has a register map check point it is because you

will not together, if store data from store queue to add on data cache is store free the load

store queue. And if free the total stores if free the load physical destination and updates

free list free the, if make desired. So, next time go to the topic of Intel Pentium.

