Computer Architecture
Prof. Mainak Chaudhuri
Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Module - 1
Lecture - 26
Virtual Memory and caches

(Refer Slide Time: 00:45)

) hold everything in fast cache |
go to the memory
creasing size the access time in

So, we roughly talked about what a cache is. You access at the cache, index into the cache and
find out whether the data is available or not. So, today what we will do is we will start with
something called cache hierarchy. That is what we use in this processor. So, it is working with;
the observation is that ideally 1 want to hold everything in a fast cache. So, I completely wanted
to avoid going into the memory.

But as we know, with increasing size the access time increases that we are talking about. So, any
structure if you make it larger, it will take more time in the access; which essentially means, a
large cache will slow down every access. So whenever you access, the access time will get
longer.

So ((refer time: 01:15)) should be very clear here. If | have a very large cache, | have a large

number of hits. So, | will never could have ((Refer Time: 01:28)) never missing up cache, if I am

making it large enough. But, every hit will be extremely slow. So, if you look at the total time
spent, that is, essentially the product of number of hits and the time to access the cache plus a
miss, how much time you text to get the data from the memory. Yeah. That is a total time spent

in accessing the data; whatever amount of data you have.

(Refer Slide Time: 01:57)

So, that is often called the average memory access time. That is, a number of hits multiplied by
time to access cache plus time to serve the misses. Or, that this also can be decomposed into
number of misses times, times of miss. So, essentially a large cache nullifies the second term
completely. An infinite cache will not have the second term. Well, not exactly true. Initially if
you start executing, you have to bring some data from ((Refer Time: 02:54) and once you have

all the data in the cache, you will never miss again.

So, when there is a large cache tries to maximize this particular term, number of hits, alright, but
this is going to be also very large. So, it depends on how these are balanced. And, a large cache
normally is not very good. So, what people do is they put increasingly bigger and slower caches
between the processor and the memory. And, the rational here is that again the locality principles
that we discussed last time is working here. That is, when you access a particular data point, the
speculation is that a near future will access the data point once again as a temporal value.

So, what you are doing here essentially is that, you put a small cache close to the processor.. You
bring a data point, put it in the cache and the hope is that you will access it again, if future can
have a hit. For over time, these data will become old and will become useless. And, that data will
eventually get replacements from other data. Again, that will draw again.

So, this small cache close to your processor is a very fast cache. That is giving you most of the
hits from the cache. If the first time that you touch a data, it will have to accommodate it. Then,
you put a slightly bigger cache after it; usually accommodate with some more data. And, it will

be slightly slower and so on and so forth.

So, overall this is going to be better than this. And, this is the punch line. That is, skip this most
recently used data in the nearest cache, which is a register file; however, what you put in the
register file is not really under the control of the hardware or the architecture. This is decided by

the compiler, when you compile a program; what data goes into what register and in what time.

The next level of the cache is the L 1 cache, the level 1 cache. It is the same speed or slightly
slower than the register file. But, normally much bigger than the register file. Then you have the
L 2 cache; way bigger than L 1 and much slower. Then we have the L 3 cache; it is even bigger
and slower. And, today industry is even contemplating in L 4 cache; belongs to this ((Refer
Time: 05:15)) So you put; you know gradually larger and slower caches between the processor

and the memory within this particular latency gap gradually.

(Refer Slide Time: 05:27)

Cache hierarchy

» Example: Intel Pentium 4 (Netburst)
= 128 registers accessible in 2 cycles

= L1 date cache: 8 KB, 4-way set associative. 64 bytes line
size. accessible in 2 cycles for integer loads :

. accessible in 7 cycles
mple: Intel [tanium 2 (code name Madison)

64 bytes line size, accessible in 1 ¢y
he: 256 KB, 8-way

So, again an example; look at couple of examples. So Intel Pentium 4 is an old processor. So, |
am talking about Intel Pentium 4 had several incarnations gradually; means, increasing
frequency. Netburst was the first architecture that came out. So, here is the memory hierarchy of
Netburst, which had one twenty eight registers accessible in two cycles. So, in this class
whenever | talk about registers, I really mean physical registers. We talked about the distinction

between physical and logical registers. Ok right.

So, of course all Intel processors will have only eight logical registers. We have X 86((Refer
Time: 06:06) registers. Here, we are talking about the physical registers inside the processor. It is
not visible to the compiler managed by the hardware. So, it has one twenty eight registers
accessible in two cycles. However, again even though this is under the management of hardware,
remember that what data goes into what register is still decided by the compiler; because it is

strict mapping from logical to physical register all the time.

Then you have the L 1 data cache, which is eight kilo byte in size, four-way set associative, sixty
four bytes line size accessible in two cycles for integer loads. Your L 2 cache; which is two fifty

six kilo byte, eight- way associative, one twenty eight byte line size accessible in seven cycles.

As you can see, when you go down let us see it increases the size also. Intel Itanium 2; so, again

Itanium 2 had several incarnations. So, this is the Madison processor. It has one twenty eight

registers accessible in the cycle. L 1 instruction data caches sixteen kilobyte each, four-way set

associative, sixty four byte line size accessible in one cycle.

Unified L 2 cache: two fifty six kilo byte cycles; unified L 3 cache: six megabyte in fourteen
cycles. So, it is bigger and very slower. There are couple of things to notice here. That is, you
might ask, well, both of these processors have the same number of registers, this one is

accessible in one cycle, but this takes two cycles why?

The question is both of these processors have the same number of registers, but here the register
file requires two cycle access time, here it requires one cycle access time. Why is that? Any
guess? Exactly. Cycle times are different. So, Intel Pentium 4 has a much faster clock frequency.
Itanium 2 has a slower clock frequency. That is it. So, the actual time is something same.

If you look at the total size of the register file here, how much is it? So, Intel Pentium 4 the one
that we are talking about here is thirty two bit machine. So, its register is four bytes. So, how

much is it amount to five hundred and twelve bytes? Accessible in two cycles.

Whereas, your L 1 data cache is sixteen times larger in eight kilo bytes; has the same limit. How
is that possible? How will you get? What could be the reason? So at one point of time, we made
a statement that in a memory structure, if you have more ports, it slows down. So, can you argue

along that line?

How many? What decides the number of ports in register file? Student: It depends on how many
((Refer Time: 09:02). That decides what?

Student: Number of required; the need ports. Who decide the right ports?
Student: The number of ...

What is that? What is it depending on? Number of issues, that is all. What about the cache?

Number of ports in the cache? Who decides that number of read and write ports in the cache?
Student: Sir, write has only one... only one write is required.

Student: ((Refer Time: 10:03). Yes you are right. So, why you write to the cache?

Student: ((Refer Time: 10:12) from cache you will write back to memory eventually. That is the
replacement. That is write to the memory. We are talking about write to the cache. Student:

((Refer Time: 10:27) cache miss. It is a cache miss, then.

Student: You are bringing the new data. Yes, you are bringing the new data at the time you write
to the cache. Why did you read from the cache? Student: As the instruction ((Refer Time: 10:
39).

What is ((Refer Time: 10:42) what would be the requirement compared to the register file ports?

What would be the requirement in the caches in the ((Refer Time: 10:50) port?
Student: ((Refer Time: 10:53).
Pardon.

Student It will be half of the... Not really half, a very smaller. Student: load instructions. It is

smaller. Yes.

Load and store; both will read from the cache. Store will do some extra work. It will first read
the data about, do the modification and write the data back to the cache. So, data cache ports is a
subset of the peak issue width of the processor. Then, the peak issue width will get all types of
instructions. And, only a subset of that will go to the data cache.

Whereas, the register file will have to accommodate all other instructions. Locate all the
instructions. So, it has a much larger number of ports. For example: in Pentium 4, if we assume
that the issue may be six, yes right, then your register file requires at most eighteen ports. Twelve
read six write. Whereas, your data cache will thoroughly require couple of read ports. Assuming
that, you can only send your pair of load store in at most two memory operations every second.

So, that is what is impacting that the latency here. If the register file has the same number of
ports, it will have much longer latency than in the cache. If it is just because lot number of ports,
the register file latency is smaller. Alright ok. So, that is about the hierarchy. Just notice how the
latency increases. You know, usually jumps a lot; five to fourteen L 3 cache. Of course, the size

is also much larger.

Today’s processors, normally the high end server based processors have much larger L3 caches
over there. Although in this course, probably we do not have time. How exactly these very large
caches are organized in a big, but just keep in mind that they are very large. They occasionally
cross. They routinely cross ten megabytes as often they are more than twenty megabytes cache

eventually.

(Refer Slide Time: 13:03)

So, we talked a little bit about states of cache line, when giving an example. So, let us try to open
that up a little bit more. So, life of a cache line starts off in invalid state, that is, the lines not in a

cache. An access to that line takes a cache miss and fetches the line from main memory.

If it was a read miss, the line is filled in the shared state. We discuss it later if there is time. For
now, just assume that this is equivalent to a valid state. So, shared state is just a valid state. In
case of a store miss, the line is filled in modified state because you know that you are in modified
line. Instruction cache lines do not normally enter the M state because there is normally no store
to the instruction cache. Instructions are readable. We need instructions and execute that. That is
it.

Eviction of the line in M state must write the line back to the main memory. This is called a write
back cache. Otherwise, the effect of the store would be lost. So, there is a second type of cache

which is called a write through cache. Well, whenever you do a store you not only update your

cache, you update the main memory also. In which case, you would not require the M state
because the memory is always up to date. So, you only require two states; valid and in valid.

That is all in the cache.

For write through caches there are two places. One is called write allocate; another one is called
write no allocate. So in write allocate write through caches what you do is, on a store miss you
allocate the block in your cache. And, you do the store in both the places in the cache and in the

memory.

In write no allocate, you do not even allocate the block in the cache in the store miss. You only
send the data to the memory and update the data in the memory disk. Ok alright. So most of the
time, we will be dealing with write back caches. We will touch upon little bit on write through
caches. And, in your homework you will actually get to compare write back and write through

cache performance wise. You will see why? ((Refer Time: 15:06).

(Refer Slide Time: 15:09)

Inclusion policy

» Normally the contents of level n cache (exclude the
register file) is a subset of the contents of level n+1
cache

= Eviction of a line from L2 must ask L1 caches (both
instruction and data) to invalidate that line if present

- Astore miss fills the L2 cache line in M state, but the
store really happens in L1 data cache; so L2 cache does
not have the most up-to-date copy of the line

- Eviction of an L1 line in M state writes back the line to L2

- Eviction of an L2 line in M state first asks the L1 data
cache to send the most up-to-date copy (if any). thenit =

yrites the line back o the next higher level (L3 or main =

memory) |
ion simplifies the on-chip coherence protocol

HBJHAK :'"3., :

it 28 .

There is something called an inclusion policy in the cache hierarchy. So, how it defines? So,
normally the contents of level n cache, exclude the register file, is the subset of the contents of
level n plus one cache. If this n value is satisfied for all values of M, when you say that in the

cache hierarchies, it increases.

So, essentially what | am saying is that whatever | have in my L 1 cache is directly to be there in
L 2 cache, even in case of error. Ok alright. Now, today’s processors usually prevent something.
So usually it is, part of the hierarchy is inclusive; part of the hierarchy is not inclusive. Ok
alright.

So, for example, in a three level hierarchy in Intel’s processors, typically L 1 and L 2 will not be
inclusive. Ok alright. Their own caches actually satisfy these properties. But L 3 will be inclusive
with respect to L 1 and L 2 contents. So anything, the union of L 1 L 2 is guaranteed to be L 3.
Alright. So, that is what it really means. But if something is in L 2, | mean, if something is in L
1, it is not guaranteed to be in L 2. For example. So that this property is not satisfied to L 1 L 2.
So, but however in this discussion, we will be assume that we are talking about inclusive

hierarchy, where the contents of L 1 are guaranteed to be in L 2.

So, eviction of the line from L 2 must ask L 1 caches, both the instruction and data, to invalidate
that line if present. Nothing it should be obvious because if you do not, you are going to use this
property because line is been evicted from L 2. It must also be evicted from L 1 caches at that
time. Otherwise, there will be a line in L 1 cache; which is not in L2. It is valid. Is this clear?
Any question? Is it ok? A store miss fills the L 2 cache line M state, but the store really happens

in L 1 data cache.

(Refer Slide Time: 17:24)

) BN

=

So, we have L 1 instruction cache, we have L 1 data cache, we have L 2 cache and we have our
main memory. So, this is what we are looking at here and this is my pipeline here, the processor
pipeline which would access the instructions from the L 1 instruction cache and you read and
write to the L 1 data cache. Ok alright.

So, what | am saying here is that, let suppose that there is a store instruction which will follow
this path. We will first go to L 1 data cache, then to the L 2 cache, then to the main memory. If
you do not find the data, so again | am assuming that | miss in all the caches. So, a store is a store
access first go to L 1 data cache; misses here. And goes to L 2 cache; misses here. Reads the data
from memory, it fills the data on its written path in L 2 and L 1 data cache, right, both to

maintain inclusion.

So, the question is what would be the state of the data that the data block in these two caches. So,
what it states is that the data block in L 2 caches will be in M states. Even though the store
actually happens in this cache, so when you verify the data, you actually do not notify the new

data into L 2 cache. L 2 cache is still having the old data. So alright

So, L 2 cache does not have the most up- to- date copy of the line. The reason is that it is not
needed. So implicitly, I am actually saying that the L 1 data cache is a write back cache. Only if
it is evicted, that particular block, the new data will be written back to the L 2 cache. Alright.

That is what it really means. Ok alright.

So, eviction of a L 1 line in M state lines back the line to L 2 M. This is when the L 2 cache gets
the new data.. Until then, it does not have it. Now... because now the question is that you ask
why | did this. Then, why should I fill the data in M state in L 2 cache? Even though, the L 2
cache is having the core data. So, reason is this. If the line is evicted from L 2 cache in M state,
then you are in trouble because unless if you send the correct data back to memory, there is a

chance of losing the new data actually.

So, whenever you evict an M state in to cache block, you first ask the L 1 data cache to send the
most up-to-date copy if any. Then, it writes a line back to the next higher level; that is, L 3 or
main memory into the... So, why inclusion is important? It simplifies something called a

coherence protocol, which we will not at all discuss in this course.

So, there is something called the coherence protocol; where you will discuss a little bit when you
talk about two output devices, but not much in detail. So, just keep in mind that there is a reason

why this is done. Not that one fine morning somebody decide to do this. any question?

Student: ((Refer Time: 20:50) when whenever we evict the block, then it asks the ((Refer Time:
21:00) yes. So, at that time using the statements of L 1 cache we can modify that. Yes right. But
you have to think about the low level implementation details. So, anyway if two cache evicts the
block, it needs to know whether it requires the data response or not, from the L 1 cache. It has to
eliminate the buffer to put the data. So, the purpose is reservation. Nothing else. It reserves some
buffer for filling the data that comes back from L1 line and L 2 data cache.

Student: This is that after every store, we have to modify the statements of L 2 cache. We have to
((Refer Time: 21:38).

Yes. Well, it is actually needed in a multiprocessor environment. That is why. Today’s processor
is a multiprocessor. And, in multiprocessor you can avoid doing that. If you are doing a store,

you have to tell others that we do one store. Others may have the copy of the whole data.
Student: ((Refer Time: 22:03) no, you do not.

Yes. That is what. So, just to clarify what they are actually discussing. Consider a sequence of
accesses that processor first loads the data in the valid state in L 1 data cache and also in L 2
cache. Subsequently, a processor wants to write to that particular cache. So, then what has to
happen?

What he is saying is that at this point, I first tell that L 2 cache to move to M state; because that is
what it actually tells you. That is the invalid. If you have a dirty block in L 1 data cache, the

corresponding block in L 2 cache is possibly in M state.

So he is saying that, that it is a bigger one. And, the answer is yes. It is a known one, which you
actually cannot avoid in multiprocessors; which I will not clarify here. But intuitively, why you
need to do this is that you may have a copy of data shared by two processors. If one processor
modifies the value of that data, other must know the modified value.

So, before one processor does a store to that data, you must tell the other guy that this data is no
longer a correct value. So, there has to be a notification that has to go. any other question from
this? Yes.

Student: ((Refer Time: 22:31). No because otherwise if the block gets evicted from L 2, the
memory may not get update in the correct data. That is what.

Student: you know but eviction of the L 2 line M state first ask the L 1 data cache. But it is not in
M state.

yes right. But, what he has suggested? | will again iterate that. What he is saying is that, well, in
any case on eviction from L 2 cache, we will ask the L 1 cache all the time for maintaining
inclusions, while at the M state. It is just a matter of the low level implementation because if it is
in M state, L 2 will know that there is a potential data response that can come from L 1 data
cache. So, it may reserve some buffer space to fill that data. Ok alright. So, you just; it is just a
low level implementation detail. If you want we go with that, then yes, you are right. We do not

need to switch the L 2 cache into M state. We do not need that actually. Any other question?

There are actually many other states, which I am not really talking about; which does complicate
matters, but give you some extra benefits like the case that we discuss may actually be handled
with some extra states. But, | will not go into that detail.

(Refer Slide Time: 25:01)

So with that, let us try to trace the sequence of events that happened by the first instruction of a
newly started program executes. So, you take the starting program counter. You access the
instruction T L B; right because the program counter is a virtual address translated to physical

address to access the instruction.

So, we access the instruction T L B with the virtual page number that we extract from the P C.
Since it is a first instruction, they will probably have an instruction to a new guess. No need to
find cross sections. So, we invoke the i T L B miss handler. The i T L B miss handler has the
responsible of calculating the page table entry address. If the page table entries are cached in L 1
data and L 2 caches; this one we discussed little bit last time that you can do this. Look them up
with the page table entry address. However, in this case you have to miss there also to do the

Cross section.

Then, you access the page table in main memory. And, the page table entries going to be valid in
this case; which means, you take a page fault. So, we invoke the page fault handler, allocate the
page frame, read page from disk, update the page table entry, load the page table in an instruction
T L B and restart the instruction fetch.

(Refer Slide Time: 26:21)

So, now we have the physical address; because this time of course, the page table will get the
translation from i T L B. So, you can access the instruction cache which is going to be a miss.
Instruction you all have it to the cache. Send the refill request to higher levels. We will miss
everywhere. So in this case, we follow this part. You miss here, then you look up L 2, you are
going to miss here. So, till memory. And, you send the request to the memory controller, which
is to be called a north bridge, long back. Now, it is not really relevant anymore because memory
controllers are now inside the processor chain. So, what guarantees that this particular instruction
page will be found in memory? How do you know? Because | say that the next step is your
memory controller has a passive device. It gets a request, it gets an address, it sends the request
to the memory as | said. What guarantees you that this particular page is in memory correctly?
Yes. How you know that the data that in the memory will return to the memory controller and
will be correct? because at least, fine, there is no check. Memory controller gets an address and

forwards it to the memory. That is it. Answer is already discussed.
Student: ((Refer Time: 27:48)
In the last line.

Student: ((Refer Time: 27:54)

Exactly. So, this particular action makes sure that the data will be in the memory. Ok alright. So,
you read the cache block from main memory. So, now the cache block comes back and while
coming back it will fill the L 2 cache, it will fill the L 1 instruction cache and return the
particular instruction or data to the processor.

So, yes, exactly | have to fill instruction from the cache line with the block offset and then the
pager can start. So, now the processor has instruction. Finally, they decode and execute. Right.
So, there is a longest possible latency in an instruction data access. This is a sequence step to do;
probably what happens. Yes.

(Refer Slide Time: 28:59)

So, little bit more on the T L B access. The important observation to make here is that for every
cache access instruction or data, you need to access the T L B first. So, that is what you see in
your physical address. So, it puts the T L B in the critical path of every instruction. If you have a

slow T L B, your instruction execution is very slow.

So if you remember, the point is that you take a virtual page number, look up the T L B in data
physical page frame number, you ((Refer Time: 29:38)) that with the page offset to get a
physical address. And then, you can look up the cache. So, that puts your TLB in the critical
path; right because the cache access cannot be done until the TLB access is completed.

(Refer Slide Time: 29:51)

So, this is the physical address. So, | put a plus here. This is the ((Refer Time: 30:17) So, is this
correct? So, this is the sequential operation. I look up the T L B and the cache in sequence. There
is no overlap. So, what I ideally want is to start indexing into the cache and read the tags, while T
L B look up takes place. So, | want to do this look up and this look up in parallel. How can I do
that?

So, the only way to do it is to index a cache with the virtual address. It has to begin with; | only
have the virtual address and nothing else. So, the question is can | use one of the virtual address
to index the cache. And, I can have my tag in the cache. Then, | forget the physical address
because by the time I look up the cache in the tag comes out, | would have the physical page

frame number for the T L B, so that | can now do a tag comparison.

So, this is called virtually indexed physically tagged cache. So, that is what is used today in all
commercial processors, at least for the L 1 cache. Ok alright. So, we extract index for the virtual
address, start reading tag by looking up the T L B. Once the physical address is available, you do
the tag comparison. So, it overlaps the T L B reading and cache tag reading. Is it clear?

So, it relaxes these latency a little bit more because now you can afford to make it clear that it is
small; even can afford to make the cache a little bit slower, but still not using because now these

two will go in parallel.

(Refer Slide Time: 31:59)

Memory op latency

[1 hit: ~1 ns

» Main memory; ~70 ns DRAM access time + bus
transfer etc. = ~110-120 ns

head of the ROB and block instruction
nt (in-order retirement is a must)

ly,the pipeline backs up, processor runs
irces such as ROB entries and physical

So, here is the typical latencies in a memory hierarchy. Do not take these as authentic numbers.
These are just examples. Just to show you what the caches are. So, everyone hit latencies about
nanoseconds today. L 2 hit latencies about 5 nanoseconds; L 3 is about 10 to 15 nanoseconds.
Main memory is about 70 nanoseconds D R A M access time plus bus transfer etcetera. So, gives
you about 110 to 120 nano seconds. Ok alright.

And, if you have a more complicated system, things may value more. So, here | am talking about
variance of about 10 nanoseconds; variance of 10 nanoseconds. The gap between minimum and
maximum may be even larger. So, point here is that there is a very big jump from L 3 to main

memory. ok alright.

So, L 3 cache is at the last level of the cache. This is your last line of the cache. If you miss there,
you are going to take a very big performance here. That is pretty obvious. So, your last level
cache should be very intelligent; should be able to identify which data blocks are important,

should retain them and make room for them by pulling away the useless blocks.

So, it has to do some form of a prediction by looking into the future in some way and say that,
well, 1 think this block is used in future, so | will keep it. That block does not look like to be
useful, so I will throw it away and make room for some other useful blocks. So, your cache

controller has to be very smart. So, it should be able to do these things. And, it is a very ((Refer

Time: 33:51)) because you can see actually why it is. There are places for that.

If your last level cache is a down cache, your processor is not going to be a hot research topic.
That is pretty obvious because this jump is enormous actually. So, just to give you the problem
little bit more completely, if a load misses in all caches, it will eventually come to the head of the
ROB. right. You have the ROB. right.

(Refer Slide Time: 34:20)

So, this is my ROB. So, this is the head. So, this is where my retirement is currently running. |
am retiring instructions from here. And, let us suppose there is a load here, which is currently
executing. This one is currently looking up the cache. Alright. So, this particular load instruction
looks up the L 1 data cache, misses in the L 1 data cache and looks up the L 2 cache. Remember
that in the meantime, the ROB is progressing. The head is actually moving gradually. This retires

instructions.

So, the point is that if before I get the data for the load, if this head moves down here, I have to
stall because I cannot retire the load at this one. So, now not only I can retire the load, | cannot
retire any of these instructions because ((Refer Time: 35:13) has to be loaded. So, that is a big
problem; which means, | have only this much of time to get the data for the load to make sure
that the processor does not stall.

Now, if a particular load instruction misses in all the caches and it has to go to memory, you can
imagine the large amount of time that it has to take. So, we did a calculation last time. | should
remind you about the calculation. Suppose, your processor runs at 3 giga hertz. Let suppose that
you retire 4 instructions per cycle, so what does it mean? So, your cycle time is one third
nanosecond. So, if | assume that let us say; let us be optimistic; let suppose that we have a
hundred nanosecond memory access in the memory time, so within hundred nanosecond, let us

assume that | will get the data back.

So, that is essentially how many cycles? Three hundred cycles, | retire four instructions in every
cycle. So, I need an ROB of ((Refer Time: 36:28)) hundred, right, to be able to hide the vacancy

of this load; which is impossible. Today’s ROB sizes are two hundreds; may be two hundred.

So, this is the problem. Why loads impose the problem? And, this is that reason; we cannot retire
anything, here also important. And, if you have an ROB of length hundred, it will take only
twenty five cycles to get your stall point; which is a very small fraction of three hundred cycle

latency.

So, this is why today actually if you look at applications that access big data, the large amount of
data. Here, numbers like ninety percent stall time. This is the reason. So, one way of resolving it
is to have the smart last level cache. You make it smart enough, so that it can retain important
data. So, you would not have to go to memory often. So yes... So, gradually the pipeline backs
up, the processor runs out of resources. And, ultimately the fetcher stalls; which severely limits |
L P. so, that is the basic problem.

(Refer Slide Time: 37:52)

So, we will talk about some of the simple solutions here. That the processor industry has adopted
over time to alleviate this particular problem somehow. So, essentially what you need is
memory-level parallelism. So till now, we have been talking about instruction in parallelism;
where you find out instructions which can be executed in parallel. Let them execute in parallel or
you offer resources and ROB. So, the same question you can ask about memory approaches. So,

can | execute multiple memory operations in parallel? That is what memory level parallelism.

So simply speaking, you need to mutually overlap several memory operations. Why is that
useful, because there if you have two memory operations executing concurrently, for both of
them we will see a latency of hundred nanoseconds. It is not like two hundred nanoseconds. Not

that one. You can overlap in time.

So, how do you achieve that? So, first step is to have a non-blocking cache. What is that? You
will allow multiple outstanding cache misses. That is the first requirement. That is, you cannot
now say that whenever my cache gets a first miss, it is going to reject all subsequent requests,
until this miss is dissolved. Then, of course you are not going to take any memory level
hierarchy. That is all about this question; because the cache itself is acting as a blocking agent.
That is why...

So, this is the first requirement that the cache must allow multiple outstanding cache misses,
even when it have bunch of misses outstanding, which is still be able to access more requests.
Allow that to go to the cache. Maybe ((Refer Time: 39:30)) alright. They should proceed.

So, you visually overlap multiple cache misses supported by all microprocessor today. For
example, Alpha 21364 supported 16 outstanding cache misses. So, today the numbers are
roughly around this. How many outstanding caches that you can support? The reason why there
has to be a limit is because we have to remember somewhere that what are the reasons that are

still outside with respect to a table. And that limits the number that you can actually...

And, this table is actually pretty much in the critical path. So, that is why it has to be small. It
cannot be very large. So, is that is this solution clear to everybody? That is the first step; that you

have to wait in the cache. Sorry, you cannot have a normal cache.

The second one is out- of- order load issue. That is, issue loads out of program order. This one
also we have disused earlier. The address is not known at the time of issue. So, what you do is
you first; the first page of the load issue actually computes the address, comes back and
computes this address to the store before it. Alright ok. Then only, you can go and access the
memory. So, how do you know the load did not issue before the store to the same address?
Issuing stores must check for this memory-order violation. So, let us talk about the memory in
detail.

(Refer Slide Time: 40:56)

So, here in the example, | have a store here and then bunch of instructions and then I have a load.
So alright. So, let us assume that the load issues before the store because r 20 gets ready before r
6 or r 7. For the store to issue, | need to make sure that these are available; r 6 and r 7. For load to
issue, i will make sure that r 20 is available. So, let us assume that whoever was generating r 20

completed first and so now the load can issue.

So, load access to the store buffer. So, this is essentially the value filled in the store tree. | am
talking about. Using this for holding already executed store values, before they are committed to
the cache at retirement. If it misses in the store buffer, it looks up the caches and say, gets the
value somewhere. After several cycles, the store issues and it turns out that these two addresses

are actually same. So or they overlap.

(Refer Slide Time: 42:06)

Now, the thing is the load must have got all values. So, maybe | have forgotten. So, let me try to
remind you. So, let us suppose that we have the single issue. And, this load instruction here is
this one. Let us say this is a load. Let suppose this is the store; that is store instruction. So,
previously we said that the condition for a load to issue is that all the stores before it must have
completed their addresses. That is what we said. Now what | am doing is | am going to relax that
because that we have already said that this looks very conservative; because many of the loads

will not depend on any of the stores, where you delaying the issue of those loads..

So, now saying that, well, | do not care. | will issue the load as soon as this operand gets ready
alright; which means, some of the stores may not have executed yet; which means, some of the
stores may not have completed their addresses. So, what does the load do when it issues? It first
computes its own address, comes back, and compares its address with all the stores before it.
And here, we are assuming that it does not match with anybody. And, the reason is that this two
has not yet executed. Ok alright. Because r 6 or r 7, one of them or both of them may not be.

So, then the load goes, happily accesses the cache and gets the data somewhere. Ok alright. It
supplies the data to its dependents that are sitting here. They also start executing. Eventually r 6
and r 7 will get ready. The stored issues executes. And you find that these addresses are actually

same. So, load has not only captured the wrong data, it has supplied the wrong data to many

dependence after it. How do you recover from this error? That is the problem, any suggestion? Is

the problem clear to everybody?

So, we are; now the problem arises because we are trying to issue loads very aggressively out of
all. So, how do I fix it? So, in the previous slide where | have a comment here; issuing stores
must check for this memory- order- violation. ((Refer Time: 44:30)) the load instruction still

inside the processor somewhere or has it retired? Yes
Why?
Student: ((Refer Time: 44:42)).

Exactly. So, retirement has to be in order. So, the load has not got escaped. So, you can cache it

and fix it. How?
Student: ((Refer Time: 44:59)).
Has loaded from ((Refer Time: 45:05)).

So, issuing store should check all loads after it. That have already executed. And, do a
comparison of addresses. And, if you have a multiple matches, what should we do? We have a
multiple loads executed in the same address. Student: it is all of them. It is all of them. alright.

So, by fixing what you need? Can you elaborate?
Student:((Refer Time: 45:40)) overwrite the value. ((Refer Time: 45:46)).

Change the value. That is all? Instructions which are supposed to read those registers have

already read and executed. What about those instructions?
Student: ((Refer Time: 46:00)).

So, you have to also find out the dependents of these loads, which are executed. So, there are two
modes of fixing. So, first step is of course that which means store; must check all subsequent
loads that have already executed. By checking | mean, compares the address. Of course, an
issuing store cannot compare address. First it issues, computes its address and then only it can do
that.

So, it checks all the loads. The simple solution is that it picks the oldest load that matches and
removes all instructions out of it. So, it re-executes everything after that. So, of course it will do
some extra amount of work. It actually re-executes many instructions which do not depend on
these (refer Time: 46:46) loads. But, it is a simpler solution. You do not have to keep track of
dependences.

A slightly more complicated solution would actually maintain the dependency of each load. So
starting from the load, you can think of it as a root. It will actually store the value to bunch of
instructions to form a tree. You keep track of the tree. So, that is what todays Intel processors
actually do. They keep track of the tree at every load to the buffer. So, that actually minimizes
your ((Refer Time: 47:13).

(Refer Slide Time: 47:18)

So, that is precisely what the solution is. So, this is called speculative memory disambiguation.
So, essentially we are doing one form of speculation. Why did you issue the load? Because we

are speculating that this load would not have any problem; would not even conflict.

So, computer architects are very optimistic about whatever they do so. Here again, we are being
optimist and we are saying there will not be any problem on issues. The good news is that it is
correct most of the time. That is why it walks. Otherwise, of course ((Refer Time: 47:50)).

So, assumes that there will be no conflicting store. If the speculation is correct, you have issued
the load much earlier and you have to allow the dependents to also execute it much earlier. Ok

alright.

If there is a conflicting store, you have to squash the load and all the dependents that have
consumed the load value and re-execute them systematically. Turns out that the speculation is
correct most of the time. And, often this is called a blind speculation because you are not really
using any property of the load. You are oblivious about the history of this load because in the
past, this load might have conflicting in the same store. Ok alright. But, here you are not caring
about that. You are saying that | will do a blind speculation; I will issue this load whatever may
be its history. Ok alright.

So, you can improve upon that. So, that is what todays processors do. They use simple memory
dependence predictors, which predict if a load is going to conflict with a pending store based on

that load’s past behavior.

So, we can actually make association between the pair of loads and stores. You can store the
association in the table, then figure out in future that this load actually is going to conflict with
any of the stores that are waiting here. If it is, then you would not actually issue this one. You
will wait until all the stores have... or at least till the predicted conflict in store has gone. Ok

alright.

So, this is what the processors do today. | already discussed about that actual predictor
implementations. If you want to read about that let me give you some papers. So, they look very
much light branch predictors. What they have to be little smarter; because here we are talking
about establishing the association of the pair allowed in a store, essentially. But, still the queries
are binary query. So, guess what answer will come. Ok alright. Just like a branch predictor. You

take a load and ask tell me if this, if it is safe to issue this one.

(Refer Slide Time: 50:00)

So, today microprocessors try to hide cache misses by initiating early prefetches. That is another
solution. Hardware prefetches try to predict next several load addresses and initiate cache line
prefetch, if they are not already in the cache. So, | hope your noticing that there are many labels

of actual predictors that go into a processor. That varies actually.

So, this is again another pattern of predictor that minds the pattern of addresses that are accessed
by the cache and tries to predict the future. Then, tell me what address are going to come in

future? Can I fix them now? So, by the time it is needed, during the cache. Alright

All processors today support prefetch instructions also. So, you can actually specify in your
program when to prefetch what. So, the compiler can actually insert these instructions that
actually take places. This gives much better control compared to a hardware prefetcher because
here you can actually see the whole program and also you can maintain the semantic of the
program. For example, you can see that it is an array access. So, you know that it is going to be
very predictive. You can access in sequential error locations. The addresses are extremely
predictive. Whereas this guy, the hardware prefetch is a finite state machine. Sitting there,
monitoring addresses and just making your prediction; a plain prediction. So, there is a bigger
chance that it may be wrong. But, of course there is an advantage that it can see all the addresses,
but the compiler cannot. For example, ((Refer Time: 51:22) addresses only visible to the
compiler. Ok alright.

Another solution that the researchers have explored is load value prediction. That is, | am
loading a particular piece of data right here, can | predict what this load is going to become; the

value. Ok right. So, that also has been explored.

So, much difficult problem; because you are not going to predict the 32 bit or 64 bit value. So,
entropy is expected to be much higher. It is not very easy and accuracy is very low. Which is
why, the industry has not yet adopted this particular solution. But, there is a large ((Refer Time:
52: 04) how to predict the load values. And, the good thing is that the programs often load
constants. Lots of constants are loaded often. And, the most loaded constant is zero. So, these
values can predict extremely ((Refer Time: 52:21).

Even after doing all these things, the memory latency remains the biggest performance
bottleneck and that is called the memory block. So, it is a very hot research topic and probably
will remain a hot research topic for a long time because there is no easy solution visible in future.
Processors are expected to get faster; memory is not getting faster at the same rate. So, the speed
gap is only increased gradually. So, a ninety percent stall time may become ninety five percent
stall time in future. So, | am going to stop here. The next time we will go deeper into caches.

