
Computer Architecture

Prof. Mainak Chaudhuri

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

Lecture - 1

Introduction, Amdahl's laws, CPI equation

(Refer Slide Time: 00:15)

Talking about benchmark applications.

(Refer Slide Time: 00:20)

He also talks about some of the metrics that we use to measure performance, we discuss

the benchmark applications for several markets segments including desktops servers and

embedded process.

(Refer Slide Time: 00:37)

 So, today we will start with perform (()) example how do you (()) b and c with the two

benchmark applications P 1 and P 2.

A (()) in one second P 2 in thousand (()) b executes P 1 in ten seconds and P 2 in

hundred seconds and c executes P 1 in twenty seconds and P 2 in (even this data (())

which of a b c is the best one right. Because you can see one then (()) P 2 where as in

both cases b is in the middle of the benchmark (()) processes you would be dealing with

hundreds of application meaningful summarization of this data that meaning by meaning

(()) which misleading that that should not lead you which is actually not the not a good

point ok

So, let us take a take a look at the possible ways that we have we put the total time to

execute P 1 and P 2. So, similarly along the same line it is possible to report arithmetic

mean of the total right. So, is the same thing in these two (()). So, if what you get is on ((

)) 500 and half (()) b takes fifty five seconds and c takes twenty seconds to executes P 1

and P two. So, according arithmetic mean you would conclude that well c is the best. So,

that well I would go on by c right do you say any problem with that P 1 may be a more

popular.

(Refer Slide Time: 03:29)

 So, two alligate this problems is there can execution mean assigns to everybody. So, as

somebody always suggested P 1, is it which is often very difficult to. So, what one of

although it probably does not have much meaning has such you could assign equal time

with respect to a particular machine. So, what do a mean by that if I take machine b what

is that I assign weight to P 1 (()) amount of time right

So, equal time weight with respect to be would be P 1 getting a weight of point b nine

and b and P 2 get weight of point 0 nine one point nine one nine if you give weightage of

point nine one nine to P 1 you get ninety point nine seconds of execution here this will ((

)) enter one nine one weightage to to program. So, you might wonder wine why should

anybody do that mean why wherever should be a equalize P 1 and P 2 to b, but any ways.

So, the point taking that particular machine now you can report, but it is easy to machine.

The the other option is to report normalize and that is normally normally we have

normalize execution times to some ways. So, the point is that will you designing the new

processer you already have one and your improve upon that. So, it make sense to specify

your performance improvements related to the current process that is after call the base .

So, now, we really talking about ratio's. So, so for example, example if I base line I

would report the performance b and c respect to and you say that P 1 then b is .

Whereas could be state as faster P 2 talk about ratios. So, how do you summaries ratios

same questions again arrives and again you have options you can do arithmetic mean you

can geometric mean which one make sense the problem is that arithmetic mean if it a

arithmetic mean of time, if it geometric mean of time it is a normal time it something is

number; however, geometric mean of ratio has many good properties.

(Refer Slide Time: 06:43)

So, we come back to that before that here is the example which shows how geometric

mean can be using suppose desire of a does not optimization; that means, down the time

previously first .

Is that b does not optimization that brings down their time to execute P 1 to five seconds

previously it was ten seconds geometric mean will continue to show these to process's

the same level because same what designer of b does is that half's the execution time of P

1 and design of a does is half the execution of P 2. So, if I if I if I take the ratio of these.

So, if I couple of a and b here. So, I have 2 ratio's for P 1 the ratio is one over ten, but P 2

is ratio is ten I take the geometric them I take the new optimization machine a and b and

the same thing same geometry.

(Refer Slide Time: 07:51)

So, geometric meaning of previous we absolute say yes designer of the a. Smarter than

that will b because designer of a was able to say 500 seconds the designer of b something

to say. So, summery provide geometric mean of harmonic mean a performance which

aspects the base line the type of been really depends on metric and the that do not cheat

intentionally. So, that is the most important point the geometric mean in mention ratios

and the reason is that the geometric mean of the ratio is same as the ratio of the

geometric mean of the company become easier and people harmonic. So, how would be

arithmetic and geometric is the largest arithmetic. So, harmonic mean has the good

property that it usually works your performance improvements because which is the

lowest.

So, if you really want to be in terms of reporting your achievements. So, that you are the

same side that you are not probably to arrogant mistakes reporting your your results

where as if you if you really want magnify you achievement that is the rural. So, as we

go on along the course I will also mention what mean to use what particular type of

measurement. So, there are certain things that also need to taking care of questions on

this measurements. So, summarization.

(Refer Slide Time: 09:51)

So, people usually use means harmonic mean is the most popular one sometime

geometric mean. Right and the an usually these are the statistic that you normally see and

do not try to for higher order statistics reporting of summarizations. So, any question all

right. So, now, will talk about particular law which is the actually. So, was the P h d

student in physics to responding when was having 50. So, the transistor were just

coming. So, develops certain concepts or theories in physics and certain equations that he

needed to solve which he could not solve. So, numerical solutions where required

machine computer.

 computer museum actually available there the tenth and they know ambrall saff a I m

you'll never come to in nineteen sixty seven we came up in this law which essentially

common sense. So, which says that make the common starts. So, exploiting to the which

essentially say is that there is a point in time and money to optimize part of the that we

should really the optimizing the parts of program for example, which requires maximum

time to execute. So, like for example, if we have the function which gets ninety percent

of time you better money to optimize that function forget about the various portion relax

that is a o mathematically ig you want to put it a forty plus.

Session of the programs can be enhance by some optimizing the processer. So, let us

suppose extraction of the entire execution of time in this particular section of the

program. So, we saying that your program and certain part of the program can optimize

software or hardware it does not be exactly matter of how do and extraction of the entire

execution time the original execution it spent in the optimizing in the processer can

speed up the execution of the section by wise. So, what does it mean; that means, the

speed up that you get t over t new t was previous execution which t over t minus t x

because t x t x y it is better these portion. So, that is what you get one over one minus

six. So, that is the speed of you get and that is the that is what .

And if look at this for are equation and you may ask the questions right that suppose I

say that you can get the unbounded amount of speed up. So, y is what will happening in

that case amount of by one over one minus x there's after whatever you. So, let me that is

a very important point that says that the portion of program that is cannot visible

ultimately which is the actually again common source the... So, fracture x is measure

before the applies. So, that is the very important thing not the it is not after next this is

actually go to change this in the apply it scenarios. So, which as says that you know

wherever you can. So, here of course, that the assumption is that x is large that is what

time. Because we can see that if x not very large ultimately you can 1.

(Refer Slide Time: 14:21)

So, for portion of program that takes maximum time to execute the allocate resources

and design time proportionate to execute time as x increases as x increase the achieved

speedup goes up for a y as y increase speedup remains limited by x amdhal's law is

usually used to compare design alternatives that is which design would bring more

performance. So, let us take a simple example fording point square root is critical in

graphics applications two design choices exist.

If it fording point square root hardware to improve square root execution by times that is

one design choice the second choice is improve all fording point instruction s by two

times. So, suppose you have these two choices which way you would go. So, suppose

fording point square root takes twenty percent of execution time. So, this is the portion

that we can action that 50 percent time spent in all fording point instructions in the

current processer. So, which design choice better. So, let us walk this out.

(Refer Slide Time: 15:45)

So, let us suppose in the choice one what we have. So, t one is the time taking to execute

in the first choice. So, here we are saying that we are focusing on the 20 percent of our

execution time that is 40 point square feet. And up by. So, what we get is 0.8 and the

remaining point two will get skilled of by ten. So, what does it give it 0.82. So, am

actually at the originally started with one is the time of one choice one what is a choice

two we are looking at 50 percent of time that. So, remaining 50 50 percent would be may

not change. So, 0.5 and the remaining 50 percent by there are fifty points the second

choice is. So, I should actually go head and I think to all 40 point instructions.

So, if you look at... So, so clearly in this upper in these case happened was that the time

spent the 50 percent time spent to fording point operations I focused on that I got better

performance, but it also depend on this factors one was ten times two times. So, you can

easily figure of what we. So, it is not that you can always speak up the time improved by

the some factor and you are always going to be for example, if I this is on point five

instead of two. So, below one 0.51.2 in that will be option one. So, you can actually

plugins the numbers formula we will get directly the answer without going through the

calculations questions.

(Refer Slide Time: 18:22)

So, Amdahl's law can be used to derive upper bound on achievable speedup in a parallel

computer. So, these this is use very often you find out find out achievable speedup for

particular. So, let us see how you do that suppose a sequential programming a profiler a

shows that. So, profiler those who do not profile is software which takes a program and

tells you where is time spent how much time spent in.

It shows that fraction s of this time is spent in executing inherently sequential portion of

the program. So, that s fraction has no chance of getting parallelized it is inherently

sequential the remaining time can perfectly parallelized on arbitrary number of processor

suppose you figure. So, what does. So, now, I can actually did use speedup machine with

pre processors how do I do that the speedup is sequential time that is t divided by

parallelized what is my parallelized time s times t will remain sequential and one minus s

time will be divided by P it has perfectly parallelized. So, that gives be one over s plus 1

minus s P on the sequences I could actually get this.

Get this by plugging in my it is exactly Amdahl saying that I could speak up this for

execution by P times alright. So, what are the changing something interesting can see.

So, in the limit the speedup gets capped at one over s these are most important part of the

this analyses essentially tells you in finite number of processers cannot get the

impossible, now if you look at some the things if you plugins values there suppose f s is

0.5 the program is ninety percent parallelized the speedup cannot surprise am running of

this show 32 machine is 95 percent parallelized only 20 times you cannot go.

An off course ignores communication overhead many other processors they actually got

utilize. So, essentially this particular tells you that you need almost embarrassingly

parallel algorithms with near 0 communication to fully utilize even a medium scale

parallel computer by medium scale I mean you know number of notes below fifty five if

we have a 99 percent parallelized program your speedup will go to hundreds not. So, you

need almost completely parallel you two exploit large scale of. So, that is the very, very

important flow I wanted to mention this although probably not use this particular thing in

this course these are normally use the courses that we need parallel programs or parallel

computer lectures, but keep this in mindany question.

(Refer Slide Time: 22:11)

 So, the next thing that is important for performance measurement is something called

CPI equation again this is common sense. So, we are seeing that you know how to

compare the processors you know how to decide physical optimization by applying

amdahl's laws the next question is how do measure it, it is time because here we knew

that you know some percentage of execution time cannot be analyze some percent can be

enhance do it to measure that. So, which of the terminal factors assume that we want to

calculate the execution time of program. So, execution time we guess clock cycles to

execute multiplied by cycle time.

We take hundred cycles your cycle sign is one nano second you required hundred nano

second to execute the now if I expand this particular term to execute the clock cycle this

is equal to number of executed instructions multiplied by average cycle per instruction.

So, execution time now becomes now to instruction count one multiplied by cycles or

instructions and CPI multiplied by the cycles. So, this is the CPI equation interesting part

of this is that this particular first time which determine by the processor an almost

nothing to do it combiner generates a binary and that is what executes in processors that

determines how many instructions.

Of course we will also depends on a that is a means which program cycle time is mostly

determine by underline semi corner the technology; however, which by the architectures

these one is only cycles for exception and that is what an architect holds power we can

do something to view your CPI, and that is what we are going to interest. So, I

progressive the course to bases of depends to see how CPI and we will also mention

solve the things to include cycle time after you will find that these two are inter related

often you will try to improve CPI.

You get the... So, we have to keep both of these time. So, cycle time is also same as

reciprocal of frequency in appropriate unit for example, one gigahertz my cycle time is

one. So, execution time equality depends on three components they equally weight and

see each components reduce the execution time reducing instruction count of a program

normally depends on the instruction set of the processor.

(Refer Slide Time: 25:36)

And the smartness of the complier that is separate. So, so let me first first part of the. So,

it says that we depends the instruction set of the processor. So, that; that means, some we

talk about instructions. So, ruff is seeking what it means that up the processor support

certain set of instruction they need be very complicated .

Now, to do a very complicated offer that processor may have for example, we can think

about the operation live stream stream means stream of right from one part of the

memory to another part there we there we just one instructions even though it is doing a

lot of operations particular on the other hand another processor may be able to maybe

maybe expose this to the compile I could allow you to copy you more than four bites at a

time only have four bite copy you can copy four bite of data from you to . So, now, copy

which essentially you get transparent which copy four bites of time. So, there is the of

here in the first case the CPI is particularly very high instructions (()). The second case

in instructions count will be large, but CPI like to do one or may be. So, here is an

example certain processor have separate instructions for doing the comparisons followed

by checking the comparison outcome to taking a branch.

(Refer Slide Time: 27:31)

So, for example, I have suppose a piece of Sea code which. So, there are many ways of

compiling one way could be that in first two x less that equal to 2 of the comparison is

one instruction. So, that generates some out come true false they say some flags

somewhere all right the next instructions goes and takes that flag and decides where to

jump whether to jump.

If it is exact actually x less than equal two you would not jump control your security

otherwise you jump to the x or there is no else part just keep the your portion and then

start. So, these are instructors all by a transistors and other processors who could actually

fuse this to get these to operations to say that branch. So, you do not the this operation

actually I say that branch is greater than. So, that exactly what is saying here separate

equality check and branch instructions can be fused one instructions such as b n e or b e

q. So, these are branch not equal to a branch depending on the nature of the here are I am

showing less than equal to here is talking about x equal to 2 x not equal. So, in these two

cases essentially what to happen is that the instruction come to the program.

We checks and this was possible in the second case to fuse this only because processor

actually processor actually implement advance. So, that is where the support from

instruction set the instruction set has the instructions of the otherwise cannot generate

this instructions it will break it down two piece similarly compiler can identify simple

optimizations. So, these example examples purely about profiler of ending with a mask

and check instead of shift and check so we are talking about something like this I want

to check k bit of the x is 1 alight there are two ways of one is that, two an x with the

masks. So, so what is that mask can somebody guess what sorry of a is that does

anybody see that what what I want in mask actually I want a one in the right everything

else should be 0. So, I ending this mask and now is to enough to check this is 0 or non 0

then the exactly I have done this the other we have doing it is that I would shift x by one

bits and then your and operations. So, essentially x shifted by k minus one and 0 x 1 I

would.

This is much for expensive this is the and forward by a comparison shift and comparison.

So, it beyond a depends on profilers smartness will profilers that I should be actually

able to this not a this. So, that is about your instruction count. So, we talk about some of

these things of the first categories that is designing instructions at without increasing

your CPI too much. So, because see there is the there is the a key balance balance

between instructions common I can make very complicated instructions. So, that you

know this entire execution of the these keeps keep block will be the that possible I can do

it the CPI going to very, so to balance.

The second component is a CPI and the goal is to minimize CPI reducing CPI depends

on past architecture how much parallelism and that is exactly worth it is going to be

major portion of the frequency of a processor depends on semiconductor technology as

well as processor architecture architectural enhancements such as deep pipelines to

improve frequency may increase CPI if not careful. So, this what essentially it mentions

how is to large the actual saying that I can reduce my cycle time we talk about this more

in detail by designing a very deep pipeline alright. So, that each pipe doing a very small

amount of water. So, the I can very fast alright. But displaying the CPI we will talk about

I cannot changing mention right now how can see what.

(Refer Slide Time: 33:14)

Yes that is what I mentioned it depends on the instructions processors.Yes yes so, but

once you instructions that it fix given a program how many instructions you going to

execute it depend on a yes, here are compiler is able to generate the optimum number of

the instructions that depends on. So, here is the example. So, let us check the same

example of last one sum additional.

So, the current g P u does not support forty point square and fourteen point square root is

software which means essentially what we do is is you implement some square root

algorithm does not even you know of any algorithm, yes.

Newton’s formula.

Newton can can who said newton and you yeah

If you basically the approximation algorithm start with initially cycle

Can you just tell me how it form the newton or how to a.

 Roots of polynomial

Yeah. So, basically you defined it as the polynomial like

What is the polynomial square root.

F x minus square root of x is equal to 0.

No what is it?

Y square minus c, right.

So, I am trying to evaluate say it square root of c. So, I would basically take x square

minus c equal to 0. So, sorry (()) is one of the simplest way of the giving this and there

are other many smart algorithms and square. So, talk about one of those full stop. So,

clearly it have a large number of instructions which means if I look at look at this large

fording point square root it will look like single operations with a large CPI frequency of

fording point instructions is 25 percent average CPI of these instructions is four point 0

average CPI of non fording point square root instructions is one point three three and

frequency fording point operation is 2 percent alright CPI of fording point square root

operation is 20.

So, five time more than average of all fording point. So, one design of alternative was to

reduce CPI of fording point square root by same times coming 2 alright the other

alternative was reduce CPI of all fording operations to by fourth 2. So, which one is

better. So, the question that still remains any questions

(Refer Slide Time: 36:29)

How do you still get these three parameters alright we require number of instructions the

CPI and cycle time will measure it time. So, CPU designers normally use detailed

simulations to get exact behavior of program execution simulations can be done at

different level of accuracy.

So, there are three options there is one called trace driven simulation obtain the a trace of

executed instructions and trace simulator which essentially simulate the processor the

trace goes to simulator and what comes out is of course number of instructions that we

which of course already he can already get from the trace because he already have;

however, it you also get cycle for instructions and you know the cycle time the problem

which simulations is that complex interaction in pipeline is not possible to model,

because the trace by running the program on some machine now you simulator you are

the process that you are trying to simulate may be different from that machine, but there

is no way to model those in interactions the trace of each instructions is already fixed by

that executions on that machine.

So, exactly what you cannot find you cannot model you come back to that most

important things that you, but in most cases this is the best possible option is do a

execution driven simulation what is that it is an accurate model of processor and memory

system designed in software and programs are run on this simulator the essentially what

to do is simulator can actually they finally, of the program and can interpret the final

meaning g code the bio an actually execute the bio alright it is just like a machine

executing in you program. So, this is the most accurate and also most time punctuality a

user can exploit the performance counters to get estimate of time spent on certain code

segments and the number of instructions in those segments frequency is known. So,

today's machine already locked on large performance propose you can gets estimate of

time spent is an codes.

Static profiling of the program can also provide an information about instruction

distribution, it is also profiler program you know what type of instruction we have for

example, we can find out information like 20 percent 40 point instructions is I have 50

percent instructions.

(Refer Slide Time: 39:31)

So, few sorry few principles that you should keep in mind one is principle of locality we

will also on that I am already mentioned in last class that program are not random pieces

of the that ninety percent of time is spent in ten percent of code it is a rule of thumb also.

So, in average estimate of course there in that is what you will find in the simple reason

is that.

The most interesting programs would have some kind of structures either if you loop or

otherwise if you do not have any of these it is essentially straight line it is a program

doing pretty much alright. So, any interesting piece of code would have loops or takes a

lot of time execute the loop of the structure and that is where this small piece of code

essentially lead to a large amount same locality. So, this is essentially say to the locality

code locality I spent a lot of time same locality principle applies to data accessed also.

So, there were two types of locality let talk about talking about one is called spatial

locality which means that closely spaced data are accessed closely in time.

Temporal locality which says that currently accessed data are likely to be accessed in

near future exploit locality in design for example, caches try to exploit temporal locality

because what we are caching now will be cached hoping that in future near future will be

touching the while prefetching exploits spatial locality that is what prefetching does not

that touching data over x we will also make a x plus 1 x plus 2 x plus 3 x plus 4 be

spatial locality saying that x. So, may be touching you nearby data also.

