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And in this part what you will be discussing is how to generate the sequence of 

permutations for permutation generations technique, combinational generation 

techniques, real generation techniques. The thing that they have presented permutation, 

this should be known to you that permutation is the arrangement of r elements out of n, 

right. 
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So, if you use the inverse then if I have n elements that elements are numbered 1 2 n and 

if you also arrange this n elements there were n p n possible ways of distinct ways you 

can arrange them. Now more generic one the given n elements 1 2 3 up to n I want to 

make the arrangement of r elements, right. So, the possible number of distinct 

permutation will be n p r, right, and this n p r is basically n factorial by n minus r 

factorial. 
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So, for example suppose I have n equals to 4 and r equals to 2 then possible 

arrangements will be, say, n equals to 4 the elements are same, 1, 2, 3, 4 then possibility 

equals to be 1, 2; 1, 3; 1, 4; then 2, 1; 2, 3; 2, 4; 3, 1; 3, 2; 3, 4; 4, 1; 4, 2; 4, 3. So, these 

are the possible elements you have, right. So, what is the basic definition or definition of 

permutation is nothing but it is arrangements of r elements out of n; that gives you the 

permutation, and in the term we will be using identity permutation. This identity 

permutation of n elements is nothing but combination of 1, 2, 3 up to n. This is the 

identity permutation. So, the two permutations are distinct; we can guess that the two 

permutations are distinct. 

One that the existence of one element is different from one permutation to another 

permutation; that means that suppose I have one permutation x 1 x 2 x r and another 

permutation is y 1 y 2 y r, these two are distinct. One possibility is that all of them may 

be same except one of them is different, right. The occurrence of all of them is same, 

right. This is may be one two three four five six up to r, here it is one two three four five 

six seven eight up to r minus 1 and this is r plus 1. Then you can tell they are distinct or 

the arrangement of the same elements is different; that means all these elements occurred 

here but occurrence position is different, right. For this example that 1, 2 is a 

permutation, 2, 1 is also another permutation, but the occurrence existence of all these 

elements are here same; only the ordering is different, right. If the ordering is different, 

then it is a permutation or the elements are different, 1, 2 and 1, 3; these two elements are 



different, then also it is a permutation. Now this one word will be using at whole is 

lexicographic permutation. 

(Refer Slide Time: 05:12) 

 

So with lexicographic, suppose alpha is the permutation of r elements and beta is another 

permutation of r elements, then we tell alpha precedes lexicographically beta. 
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If there exist j such that x i is equals to y i, i less that j and x j is less than y j. So, we tell 

alpha precedes lexicographically beta if there exist a j such that there exist a j here x j y j 

such that all of them are same; this is same, but this one is less than this one, okay. 
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So, a permutation x we tell it is a gamma x lexicographic permutation, right. The 

permutation we tend to the gamma x lexicographic permutation when there exist exactly 

gamma minus 1 permutation precedes lexicographically your x, got it; that x is a 

permutation we tend to the gamma x is lexicographic permutation then there exist an 



exactly gamma minus form permutations lexicographically preceding the x, right. That is 

why it is written as gamma n permutation. So, we will give one example, say, I have n 

equals to 5 insert r equals to 3. Now if I have to write down all the lexicographic 

permutation then I can write it is 1 2 3, 1 2 4, 1 2 5, then 1 3 2, 1 3 4, 1 3 5, then 1 4 2, 1 

4 3, 1 4 5, right, then I can write 1 5 2, 1 5 3, 1 5 4 and so on. So, this is about your 

definition of lexicographic permutation. 
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Now what is the problem? Problem is that given n and r I want to generate all 

permutations, right, this number may be very large, so I need the help of parallel 

machines. So, can we have parallel algorithms to generate all n p r arrangements? So, the 

first algorithms actually there are two algorithms which came out together and one of 

them is order algorithms, and let us discuss first the order algorithm then we will come to 

all of this. This is the first algorithm whatever we were presenting this is not based on the 

lexicographic idea; it will give you all set of permutations and at each iteration it will do 

some reposition, so that after r iterations you will be getting a permutation of r elements. 
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What I am telling is that it is an r iteration factor. At each iteration it interchange one 

element with the another one. So, after r iteration he gets all the permutations, right; that 

is the idea. Now one thing you observe that if I have n p r permutation, this permutation 

makes use of the arrangement of r elements, right, but it is not like combinations. You 

can think that in this case it obeys certain distributions all 1’s will be there irrespective of 

the same occurrence of elements. 
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Say, 1 2 3 and 1 3 2, the occurrence of elements are same but only ordering is different. 

So, if I observe one two three four five six seven eight nine ten eleven twelve; 12 of them 

starting with one’s then you will be getting 12 of them starting with two’s, 12 of them 

starting with three’s and so on, right. So, for example this one will be 2 1 3, 2 1 4, 2 1 5 

and so on. There were 12 such cases with two, right. 
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Basically that if I have n p r arrangements then there are these n p r elements can be 

divided into n blocks. Each block is having sign n minus 1 p r minus 1, okay. Now this 

what I did? You have n p r; I can divide into then n minus 1 p r minus 1 size blocks. How 

many size blocks? n blocks, n blocks each of size n minus 1 p r minus 1. Now the first 

block one block contains the element one, first element is one. Now second block 

contains the first element 2 and n th block contains the first element n, is it okay. So, 

there are n blocks; first block contains one, second block first contains two, and nth 

block contains first element n. Now I have to make some arrangement such that this two 

come as first element, n come as the first element and so on, right. 

Now that if I know that first element is r or two now here that whatever I will be putting 

all one’s here just I am interchanging these two elements, I have put all ones, right, and 

two comes with first element, is it okay. So, how many elements are having one’s; that is 

n minus 1 p r minus 1. Now among these n minus 1 p r minus 1 whose first element is 

two, second element all of them will not be one; some of them will be one, some of them 



will be three, some of them will be four but not two, because two has already occurred. 

So, what I am doing I will divide it again this one into n minus 2 p r minus 2 size group; 

that means n minus 1 groups each of size n minus 2, right. Now among this these 

elements will be having one, these elements will be having three, these elements will be 

having four and so on, okay. So, that is the idea we want to introduce. So, you proceed it 

with r iterations up to r iterations you will be getting all the desired elements. 
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So, let us define first a tower I k b k; I k b k is obtained by interchanging the k th element 

we kept as b k minus 1. At this moment we will assume that b k is one number one 

integer for this b k we have integer. So, I k b k is obtained by interchanging the k th 

element with k plus b k minus 1 th element. Now initially I 0 1 means there it is nothing; 

it is not doing anything because k is zero and b k is one this is also zero. So, zero th 

element is interchanged with zero element, nothing is done, so that is a stationary one. 

And I also assume x, what it gives you is x is the old array of size n p r, n. So, it is a two 

dimensional array of size n p r and n; that means you have 1 2 3 4 n p r and here this side 

you have 1 2 3 up to n. 

So, this is a large matrix two dimensional array, that is your x, and initially you assume 

that each row contains n th identity permutations. Each row contains the identity 

permutations, what it means? That it takes 1 2 3 up to n, 1 2 3 up to n, 1 2 3 up to n, 

initially you assume the identity array. So, this is I 0 1, this is I 0 1, this is I 0 1. What is I 



0 1? I 0 is the identity permutation and what is x? x is a two dimensional array each of 

size, size of the array is n p r cross n, right. So, as I told you that it is r iteration 

algorithm. At the first iteration I divide these n p r rows into n groups, and this division is 

equally done. 
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So, that means here first group of size n minus 1 p r minus 1, second group is also size n 

minus 1 p r minus 1 and so on. 
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So, first group contains the elements 1 2 up to n minus 1 p r minus 1; second group 

contains n minus 1 p r minus 1 plus 1 n minus 1 p r minus 2 plus 2. Similarly, you have 

the third group 2 n minus 1 p r minus 1 plus 1 p n minus 1 p r minus 1 and you have nth 

group, right. So, then what I did? I divided this r n p r rows into n groups and the first 

group contains the rows 1 2 3 n minus 1 p r minus 1. So, think about the i th row, so i th 

row let us assume that is in the b 1 th group, i th row is in b 1 th group. 
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So, you can easily find out what is the index of i th row in which group it is b one th row, 

so it is b 1 minus 1 n minus 1 p r minus 1 plus 1 to b 1 into n minus 1 p r minus 1, that i 

must be lying between these two numbers, is it okay. So, it lies in the b th group and you 

remember the first element as I discussed this is first n minus 1 p r minus 1 element first 

element will be one, first element will be two and b one th group the first element is b 1. 

So, what I will be doing if it lies in the b 1 th group then I perform the operations I 1 b 1; 

that means the first element is interchanged with b 1 th element. 
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So, b one th group first element will be b 1 b 1 b 1 and so on, and here all of them are 

one, then you just have to interchange that is from the definition of this, agreed. So, let 

these elements or these rows because I told that what is x? x is the complete set of rows. 
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So, you have x this is your x. Now I got these many elements they are belonging to your 

first element is b 1, these rows having first element b 1. Let us name this as x b 1; x b 1 is 

nothing but the set of rows, right, whose first element is b 1 and of course one has come 

here because I have just interchanged. How many such rows are there? n minus 1 p r 



minus 1. Now these n minus 1 p r minus 1 rows are divided into n minus 1 groups, each 

of size n minus 2 p r minus 2 because these number of elements is n minus 1 p r minus 1 

and this I can write n minus 1 factorial n minus r factorial, is that okay. So, I take out n 

minus 1 n minus 2 factorial by n minus r factorial which I can write n minus 1 n minus 2 

p r n minus 2. So, what I am dividing? I am dividing this n minus 1 p r minus 1 into n 

minus 1 groups each is having n minus 2 p r minus 2 groups. 

And remember here this element is 1 b one th area is 1 and this is b 1 and now thinking 

about the second element. Now second element first n minus 2 p r minus 2 elements 

should be 1. So, I would like to have some procedure to bring interchange these two, 

right. Similarly, the case with this and so on, right. What I will be doing that I have 

divided into n minus 1 group each is of size n minus 2. So, I can get a group number. Let 

us assume that i th row is belonging to b two th row. Let us assume that your i th row 

now belongs to b two th row. So, this b two th group I will perform the operations I 2 b 

2; that means second element will be interchanged with b 2 plus 2 minus 1, second 

element will be interchanging b 2 plus k plus b k minus 1, right, is it okay. 

So, you can find out similar to this case the first group contains the row index. Can you 

tell me what are the row index for first group of b 1 x b 1 what is the starting index of 

this, starting to this prior to that there are several searches. So, what is the index of this? 

Index will be? 

Student: x n minus 1 p r minus 1. 

Up to this, it is belonging to other rows. So, first I need to know the starting index; 

starting index is b 1 minus 1, right, and it is n minus 1 p r minus 1 plus 1, right, that is the 

starting index of this. What is the n index of this, this one? So, it will go up to b 1 minus 

1 n minus 1 p r minus 1 plus n minus 2 p r minus 2, right. What is the starting index of 

this and n index of this? It will be b 1 minus 1 n minus 1 p r minus 1 plus n minus 2 p r 

minus 2 plus 1 to b 1 minus 1 n minus 1 p r minus 1 plus 2 times n minus 2 p r minus 2 

and so on. So, this is the first group of x b 1, this is the second group of x b 1, third group 

of x b 1 you can define and there are how many groups? n minus 1 groups, right. So, 

once you know the group number let it be b 2. So, b 2 group what I will be doing in the 

operations that modify that b i 2 with b 2. So, that interchange you will be making. Now 

at that oval at the k th iteration let us assume now what happens at the k th iteration. 
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Let us assume at the k th iteration, right, that I have a subset of as I define x b 1 subset of 

rows at k th iteration I have a subset of rows x b 1 b 2 b k minus 1, right, and can you tell 

me what is the number of rows in x b 1 b 2 b k minus 1? Can I say when it was b 1 only 

b 1 k is 2 when only b 1 was there it was false n minus 1 p r minus 1, right, when only if 

b 1 it was n minus 1 p r minus 1, when b 1 b 2 it is n minus 2 p r minus 2. Now when I 

have a set of rows where you have performed the operation b 1 b 2 b 3 that means what, 

what is the logical indication? Logical meaning of this is that b k minus one th group or 

the b k minus 2 th group of dot dot of b k th group b two th group or b one th group, 

right.  

What it means that initially i had b one th group then I got b two th group and within that 

I got b three group; I am talking about b k minus one here that group, I am talking about 

these many elements these many groups which is of size n minus 1 combine with k plus 

1 p r minus 1. Now these groups are divided into how many groups n minus k plus 1 

groups, right. So, these groups this size is n minus k plus 1 p r minus k plus 1. Now these 

groups are divided into n minus k plus 1 groups each of size what n minus k p r minus k. 

So, on dividing this n minus k plus 1 p r minus k plus 1 group into n minus k plus 1 

groups each of size n minus k p r minus k, right. Now can you tell me what is the starting 

index of the first group? 



So, first group starting index b 1 minus 1 n minus 1 p r minus 1. So, up to this is over 

then b 2 minus 1 n minus 2 p r minus 2 plus b 3 minus 1 n minus 3 p r minus 3 b k minus 

1 minus 1 n minus k minus 1 p r minus k plus 1 plus 1, then there is the starting index, 

right. So, this is of b 1 minus 1 n minus of p r minus 1 it is coming here plus again you 

have to go down b 2 minus 1 n minus 2 r minus 2 and so on plus 1 is the starting index 

and first groups n index will be whatever it is here. Suppose this it is A plus n minus k p 

r minus k that is the end index if I assume this part is A, agreed. Now the second group is 

A plus 2 times n minus k p r minus k plus 1 to A plus, is it 2, no, A plus 2 times n minus 

k p r minus k and similarly is the case with the n minus k plus 1 rows.  

So, I now know the starting index and end index; I have divided into n minus k plus one 

groups. So, i get the b k th group and for this I performed again I k b k for the b k th 

group I performed this iterations that is sub k th element will be interchanged with k plus 

b k minus 1, okay. So, when k equals to r you will be getting all the necessary 

arrangements and pick up the first r elements to get your arrangements, okay. So, let us 

thing little generic way, suppose you have i th row and picking up the i th row. Now you 

have to find out what is the value of b k, right, for the i th row. What is the group number 

at the k th row iteration of r, what is the group number at the k th iteration of r? 

So, let us assume that j is the serial number of i th row where you have performed b 1 b 2 

b k minus 1; that means after k minus 1 iterations the j is the serial number of i, is it 

okay, then you have that b 1 which precedes all the array. Now here you have the i th 

row, i th row is this. So, j is this one, this index is j. j is the serial number of i with it x b 

1 b 2 b k minus 1, right. Now you have to find out the group number of i; group number 

of i is nothing but j divided by n minus k p r minus k. So, that if I know I can find at 

every iterations what is this serial number or in which group it lies? So, once I know this 

one rest of everything is very simple just interchange. 
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Now let us write down the algorithm to generate all permutation of r elements out of n 

elements. Initially let us define an array x when x i j is j for all I, and also we assume that 

n is equals to n minus 1 p r minus 1 and also let us assume that j is equals to i; that is I 

am thinking about the i th row j is equals to I, so this is your initialization. Now what I 

have to do? It has to iterate in r iterations. So, iterate r times. First you find out the mu j 

or group number r times, say, k equals to 1 2 r. So, b k I have to find out; b k is nothing 

to J by N that will give you the group number. Then you finally do the mod and 

interchange k with b k, right  

Once you have performed this operation you have to now modify your j and modify your 

n. What is your j? j is whatever initial j was there minus b k minus 1 into N, right. So, 

that will give you now modified j initial is now I have divided into this. So, I want to 

know what is the new j, what is the new positions that many has to be subtracted. So j is j 

minus b k minus 1 into N, and what is now your new N. New n is N by n minus what? 

Say first time it is n minus 1 p r minus 1, second time it will be n minus 2 and so on. So, 

can I write it is n minus k plus 1 n minus k, k is 1 this k n minus k. So, let us reduce by n 

by n minus k. So, this is your steps to be iterated. So, to get the one permutation you 

need to iterate r times and you have n p r rows. 
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So, basically if I use a sequential algorithm you need n p r into r, right, r iterations and 

for each row you will be doing the complexity terms order in terms p r into r, right. Now 

you observe that if I have to generate the i th permutations I do not need the help of j th 

row, i th independently I can do, right. While I compute the i th permutations I can easily 

independently compute because they are independent. So, if I have n p r processors then 

I can generate all n p r permutations after r iterations plus they are independent. So, this 

algorithm can be implemented on any parallel machines, right, the complexity of this 

algorithm will become order r. 

So, if I have p processors, right, to generate n p r permutations of r, I need n p r divided 

by p times and each time you take order r times, right, because you have the p 

processors, each processor will be generating that many permutations. So, what happens? 

You have the p processors and I employ the p processor to generate n p r permutations. 

So, each permutation where processor will be told to generate n p r divided by p that 

many permutations, right, and to generate one permutation you need order r times. So, 

the total complexity of these algorithms using the preprocessor is n p r by p into order r. 

Now what is the cost of this parallel algorithm? If you remember the definition of the 

cost of parallel algorithm is nothing but the worst case time complexity multiplied by the 

number of processors. 
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Cost is worst case time complexity is n p r by p into r plus number of processors like that 

processors which is order n p r into r, right, there is the complexity. Now let us consider 

one example to illustrate this form 5 factorial by 3 factorial you got 2 factorial, it is a big 

number, 5 factorial 2 factorial, 5 into 4 into 4 put the big number 4 factorial by 4 

factorial is 24. Let us consider n equals to 4 and r equals to 3. Let us see how it works. I 

know that there are 24 numbers let us assume we want to do this; otherwise you may not 

feel good, right. 
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So, initially there are 24 rows 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

23. Initially numbers I told that they have identity 1 2 3 4, 1 2 3 4. 
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So, these are the 24 rows as I told you that you have n p r rows which is 24. Now this 24 

rows are divided into four groups, right. Each group is having size n p r minus 1 which is 

6. So, this if you divide into the four groups which is of size 6 groups. Now this is first 

group, this is the second group, this is the third group, and this is the fourth group. Now 

first group I will now be performing the operations b 1 is this; b 1 is 1 2 3 4. So, if I have 

to perform this one first group b 1 is 1, so no interchange, b 1 is 1. So, 1 plus 1 minus 1 is 

1, so no interchange. 
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But here this will be interchanged 2 1, 2 1, 2 1, 2 1, 2 1, 2 1. Here this will be 

interchanged with this one, right. So, it is 3 3 3 3 3 3, 1 1 1 1 1. This will be interchanged 

with this one, right. Now I have four groups, first element is 1 2 3 or 4. Now consider 

this group. It has common elements 6 elements. These six elements are divided into n 

minus 1 groups; n minus 1 means basically three groups. 
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Each group is of size what? n minus 2 p r minus 2, n minus 2 p r minus 2 is 2. So, you 

have divided into the three groups. This is also three groups, this is also three groups, 

three groups, three groups. 
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So first group I 2 b 2 then first group will be interchanged with the group number plus 2 

minus 1. So, this one will be interchanged, what is b 2? b 2 is 1, 2 plus 1 minus 1, what is 

that? 2 plus 1 minus 1 is 2. So, for this group no interchange as it is. For this group b 2 is 

2, 2 plus 2 minus 1. So, this will be interchanged with this. 
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3 2 3 2, right, and for this group this will be interchanged with this 4 4 2 2. For this group 

there is no interchange, for this group this will be interchanged with this one 3 3 1 1, this 

will be interchanged with this, 4 4 1 1, for this group no interchange and here it is 1 2 1 

2, 4 4 2 2, 3 2 3 2, 1 1 2 2, right. Now this is one group, this is another group; this is 

another group, one group on another each of size 2. Now again we will be dividing into 

two groups and each of size one and interchange with that. So, what happens in the third 

group this will be interchanged 4 3, this will be interchanged 4 2, this will be 

interchanged 2 3, this will be interchanged 1 3, this will be interchanged 4 1, this will be 

interchanged 4 3, this will be interchanged 4 1, this will be interchange 4 2, 2 1, 2 3, 1 2, 

1 3. So, this is the operations we have done. 

Now I am telling that first r elements will give you the arrangements; that means I am 

removing this one, I am removing this one, I am removing this one, I am removing this 

one. Now you check whether you are getting all the cases or not 1 2 3, 1 2 4, 1 3 4, 13 2, 

1 3 4, 1 4 3, 1 4 2, 2 1 3, 2 1 4, 2 3 1, 2 3 4, 2 4 3, 2 4 1, 3 1 2, 3 2 4 and so on. You 

observe that all of them are distinct and they constantly contain r elements, all the 

number of elements is n p r. So, continuously you will be getting n p r distinct 

permutations, right. And you observe also that the ordering is not in lexicographic order 

because here 1 2 3, 1 2 4, 1 3 2, 1 3 4, 1 4 3 then 1 4 2, this is not lexicographic precedes, 

right.  



Similarly is the case 2 1 3, 2 1 4, 2 3 1, 2 3 4, 2 4 3, 2 4 1 and so on. So, it is not 

lexicographic permutation, but it generates all the distinct permutation of n p r size of r 

arrangements out of n, right. The disadvantage with this technique is that it needs a huge 

array n p r rows and n columns, right, and if I use preprocessors the algorithm can be 

made easily adaptive. Since, the generation of one permutation does not depend on 

another one, so at last it holds good. So, it can be implemented on any parallel machines 

using preprocessors the complexity will become order n p r by p into order r. So, this is 

one algorithm. Next algorithm we will be discussing on differential structures. So, I think 

I will not be covering today that one; we will be discussing this on the next class. So, 

before that I assume that you have knowledge on balanced binary tree. 

See we design a new data structure based on the height balanced binary tree, right which 

has n blocks to generate the permutations and which is also adaptive and can be 

implemented on any machines, right. Now if you remember that height balanced binary 

tree is a binary tree where height is of order log n and height of the left sub tree minus 

height of the right sub tree is plus minus 1 lying between plus minus 1; that is height will 

be left or right, it may be minus 1 more than the right sub tree height or plus 1 or may be 

of the same height, right, and insertion of any node in the balanced binary tree is also 

order of log n, deletion also takes order log n and you wanted to make use of this data 

structure we will modify this data structure so that this can be used for our permutation 

arrangement reverse generations. See we define a problem is of that structure that given 

m records which form a balanced binary tree and an argument k, your aim is to find a 

nonnegative integer u such that if I insert k plus u or the right of k plus u in that m record 

is u plus 1.  

And if you get that u plus 1 you insert that node at the u plus one th element and then 

rebalance the tree for future generations. So, that is the problem. So, first we will be 

discussing about this problem, and we will discuss how you cans solve it. Then we will 

see how we can make use of it to generate the lexicographic permutations, because our 

algorithm aim is to generate the lexicographic permutations. We will also be discussing 

another formation algorithm which is generally we have n elements and r distinct objects 

you want to select, but suppose what happens that n elements which are not distinct. The 

problem is little different that if the elements are not distinct and you want to generate r 

out of n then some of them will be repeating them again. So, how to generate that 



permutation also we will be discussing and along the algorithm; so let us stop here. We 

will discuss in the next class.  


