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Lecture - 2 

So in the last class, we discuss about that certain sequential data structure and also you 

have told, what is the algorithm and data structures. So, today I like to consider, the 

different paradigms on sequential or paradigms we use for sequential are going to 

consider. I assume that you have the base knowledge, basic knowledge on these 

paradigms however, for completeness saying I will be covering this, some of this 

paradigms. And I will be little fast because this is an why, you can consider it is an warm 

up or class, so that do not take any problem in understanding the parallel algorithms you 

will be discussing similar type of problems. 
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Now, the the different paradigms we use for sequential algorithms are one divide and, 

divide and conquer, this is one when notepad is, we use it. The next one is the greedy 

method, third one is dynamic programming, fourth one is back tracking fifth one is 

branch and bound. 
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Then, we have linear programming, integer programming and so on, we try to discuss in 

detail at least the these three paradigms right. And if we can also then discuss about this 

back, back tracking and, branch and bound paradigms, if time permits. 
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So, now let us consider our first paradigm divide and conquer, what happens here 

actually suppose, here a problem P and that, you want to solve this problem P. 
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What we will do in divide and conquer, you divide this P, problem P into several sub 

problems P 1, P 2, P 3, P k. There are k sub problems, you can divide this P problem into 

several sub problems and these sub problems are having the similar properties, as we 

have in the case of P. Now, I will solve this problem P 1, problem P 2 and problem P 3 

and problem P k, and then I combine the results to get the solution of P, is it ok. Then, 

what we do, that we have the k sub problems, these sub problems, each sub problem is 

parallel in nature with reference to P. Now, we try to solve this P 1, P 2, P k and if I can 

solve this, then you combine result to get the solution of P. 
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Now, it may so happen that, P 1, P 2 and P k they are also large in size, the problem is 

not that simple problem. Then, you divide these sub problems into further sub sub 

problems, where we can have P 1, P 1 1, P 1 2, P 1 3, P 1 suppose, n 1 similarly, the case 

with P 2 and so on. Now, you solve this problems P 1 1, P 1 2, P 1 3, P 1 n and combine 

to get the solution of P 1 and so on. 
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Now, say for example, we have to find out the sum of n numbers now, by observation 

you can tell, the finding the sum of n numbers is a sequential process. Now, look at the 

problem that I have x 1, x 2, x n this n elements I have, these are the n elements x 1, x 2, 

x n. 
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And I want to find out the sum of n numbers, this n numbers so, one we, I can think that 

I divide this into two parts right say, I want to find out the sum of n numbers. Now, that 

instead of, finding the sum of n numbers, what I do here now, I will find sum of 1 to n by 

2, and this side I find sum of remaining n by 2 elements. Now, I got the result of this sum 

of this sum of this session and I combined this two, to get the sum of n numbers. 
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So, if I have to write this in the form of algorithms, I can write sum A say, I want to find 

out the sum of l to u. 
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If l equals to u then, return A l else if, l equals to u minus 1 then, return A l plus A u else, 

return sum A l. Return else m equals to l plus u by 2 and then, return sum A l m plus sum 

A m plus 1 u. So, basically you are computing this l plus u and then, you return this sum 

and then, plus this one. 
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So, if you have to compute the time complex in for that then, I have T n is equal to Zero 

if n is equal to 1, 1 if n equal to 2 otherwise, 2 T n by 2 plus 1, otherwise. 
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So, you have to solve this when this one is coming under one condition and this is size is 

half, size is 2 T n by 2. So, T n becomes 2 T n by 2 plus 1, which I can write 2 times 2 T 

n by 4 plus 1 plus 1. So, it gives you basically, 2 square T n by 4 plus 2 plus 1, is it 

correct? Next time I write, 2 square T n by 8 2 times plus 1 plus 2 plus 1 so, I get put 

cube T n by 8 plus 2 square plus 2 plus 1. 
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So, if n equal to 2 to the power of k, I get here 2 to the power of k minus 1 T 2 plus 2 to 

the power of k minus 2. 
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Now, this is T 2 is 1 so, here 2 to the power of k minus 1 so, here 2 to the power of k 

minus 1 plus 2 to the power of k minus 2. 
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So, this keeps you 2 to the power k minus 1, 2 minus 1, which nothing but, n minus 1 

because, 2 to the power of k is n so, you get n minus 1. And which is the, reality is also 

true that, to find the sum of n numbers, you need n minus 1 an each other. So, this is our 

first simple problem now, you know that binary search let us think about the binary 



search, what happens. In the case of the binary search we assume that the elements are 

either (( )). 
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So, suppose you have n elements, you have (( )) A 1, A 2, A n and n argument k you 

have. Your interest is to find whether the element k, exists in this sequence of an 

elements or not now, it is assume the elements are in increasing order. 
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So, in the case of binary search, what we do, we divide these n elements into, you 

compare the k with the middle elements. It has the property that is, it is in increasing 



order then, these elements is less than equal to this, less than equal to  this and so on. So, 

we will be comparing the middle element with the k now, we should find that, k is for 

find that, k is less than a m where, a m is the middle element of the sequence. 

Then, k if k exists at all then, it will lie here so, in that case in that case, my searching 

zone will be reduce to this part and you can easily discard all the elements of (( )) so, my 

searching area. Now, the searching zone is reduce to this and again, I take the middle 

element and I compare with that k, is less than equal to, all greater than, if it is equal to m 

or the middle element, you tell the element exist and you got the below m. Now, if find 

that k is greater than this side, the k lies in this zone. So, my searching zone will be 

reduce to this and so on, till you possess this one, till I find that, there exists only one 

element. And we compare and you have compare and found either exists equal to or not 

equal to. 
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Now, in that case, if I have to estimate the time complexity for that, there it is comes T n 

is, you will comparing 1 and the size increases to half, if n is greater than 1. And if n 

equals to 1 then, only one component will be required. Now, the solution of this becomes 

order log n now, if I have to do or I have to write the generic algorithm for divide and 

conquer, and with the addition, we will be dividing the problem into the two sub 

problems. 
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So, i write D and C, the problem P and size is small p and q so, this the problem from the 

size of p and q. Now, if problem p q is small then, solve else, m equal to say, p plus q 

divided by 2 and then, you call divide and conquer P p m x equals to, y equals to divide 

and conquer P m plus one, q. And then, combine the result combine the result x with y 

that is the required so, this is the generic algorithm for divide and conquer. 
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If i have to see the time complexity T n is equal to say, f n if n is small else, this 2 T n by 

2 plus, some another function g n, otherwise right. So, this g n is for the time you need to 

combined this together. 
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This is an example of divided and conquer paradigms suppose, you have x 1, x 2, x n or 

that n elements and they are not in sorted order, you want to arrange it in ascending order 

or descending order. Let us assume without the laws are generated, you want to arrange 

it in ascending order. So, this merge sort is a technique to arrange this n elements either 

in ascending order or descending order. So, algorithm becomes very simple, if I write 

merge sort and you have x l dot dot u then, you can write m equals to l plus u divided by 

2. Then, you write merge sort x l m merge sort x m plus 1 u then, you have merge x l, m 

plus 1,u. 
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What it means, that basically you have n elements, you have n elements and you are 

dividing into two parts, you are recursively you bring the merge of this, recursively 

merge of this. And then, this is in increasing order, this is also increasing order, you are 

that combining this two results, to get the result is in the increasing order. So, m is the 

middle of this, you are diving this n elements into the two equal part, you are making the 

merge of algorithm recursively you are calling this part, merge of algorithm calling this 

side. Then, you are merging this two to get the results, we will be discussed how to 

merge this one. 
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If it is the case then, my time complexity becomes T n equal to 2 times T n by 2 plus the 

time you need, time you need time you need to merge. 
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So, let us think about how to merge, you have a 1, a 2, a 3, a x and you have b 1, b 2, b 3, 

b y. Suppose, you want to merge this two, the sequence with the understanding that, this 

is satisfying this criteria, this satisfy this criteria and we want to merge these two sorted 

sequence. So, what I do, I compared a 1 with b 1, if you find a 1 is smaller than b 1, then 

a 1 is the smallest element, which is I write c 1. 

Now, once you have selected a 1 that pointer moves to this area and I know to compare a 

2 with b 1 and if you find still a 2 is smaller than b 1 then, you write in the position of c 1 

and the pointer moves to a 3. Now, a 3 is compared with b 1 and if you find that b 1 is 

smaller than smaller than a 3 then, b 1 is come here and pointer moves to this place. And 

proceed till till one of the array, already one of the sequence is, already task for to c 

sequence and that in any elements c 2 is elements is to c to get the final merge sequence. 
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Now, here I have, basically I have one sequence i have one sequence x 1, x 2, x l, x l plus 

1, x m then, we have x m plus 1, x m plus 2 you have, x u, this is satisfying this property, 

this is increasing order and this is also increasing order. Now, move to merge sort so, I 

can write merge x l, m plus 1, u or be mid and then, you I write, I equal to l, j equal to 

mid. And k is the pointer for merge sequence, which is l which is l so, I will be moving 

this pointer i j and j i and j. And we will see as long as as long as whole sequence is 

considered, we have to, is not yet considered, we have to do these operations. 
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So, while i is less than mid mid and j is less than u, you have to do the following that is, 

both the sequences as are not existence. If x of i is found less than x of j then, this 

sequence contains the smaller element. 
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And that has to be moved to sequence say, y of k is your x of i and i is increased by 1. 

Otherwise is this greater than this. So, will be writing if y of k is your x of j and j is 

incremented by 1 and in both the case, your k will be moved incremented by 1. This is 

the things you have to do that, if you find that x of i less than x of j then y of k is updated 

by x of a x of i and i is increased by 1. Otherwise, k is updated by x of j and j is 

incremented by 1 anyway, that you have to update the y of k to get the next position of y. 
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Now, in that process what it may so happen that, one subsequence is already enter into y 

sequence and some parts of other sequence enter into y sequence. The remaining part is, 

a 2 shifted to y so, that has to be taken into account. 
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So, this can be done like that, if you find that, i is greater than equal to mid then, their 

exist some elements of the second sub sequence to be shifted. That is, for l equal to j to 

u, y of l is your x y of k equal to x of l at k is increased by 1 else, for l equal to i to mid i 

to mid minus one equals i to mid. 
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And then, y of k is your x of l and k is increased by 1 so, basically your merging of x 

sequence, x subsequence and this sub sequence and merge sequence you put it y. 
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But, in order to, get the result back to x, you have write a small statement that is, for i 

equals to one for l to u i equal to l to u, you have x of i equals to y of i so, then result will 

be stored by to x. When you (( )) up to find out the complexity of this algorithm then, 

you observed that it takes basically, here worst case scenario, what will be the worst case 

scenario. 
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Worst case scenario could be that, one element you have this subsequence and this 

subsequence. So, you are taking one element here then, next element then next element, 

next element, next element, next element and so on. So, that my comparisons, this will 

be compared every time and which, will be taking order l minus u basically, order n, u 

minus l that basically, order n. And this is also we will take, otherwise also, better 

moment time also basically will find order n. So, merge routine will take order n time 

merge routine will take order n time. 
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So, it that case, merge sort take the following time needs the following time if T n is the 

time complexity to solve then, you have T T n by 2 plus order n, this is for merging. 

What is the complexity now is having, 2 times 2 times T n by 4 so, let me write the T n is 

O n is c n, can write c n here. And here, I write c n by 2 so, this gives you 2 square T n 

by 4 plus c n plus c n, which gives me 2 square 2 times T n by 8 plus c n by 4 plus c n 

plus c n. 
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So, this gives me 2 cube T n by 8 plus 3 times c n.  
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Now, if n equals 2 to the power k and T 1 is 0, one element nothing to be sorted and T 2 

is T 2 is 1 because, only one comparison we require so T 2 is 1. In that case, T n 

becomes 2 to the power k T 1 plus k times c n, this is zero so, you get c n log n times, 

this is called as order n log n. So, this is matching matches, this matches in the lower 

bound or lower bound of sorting algorithms, this takes what all, log n time complexity to 

solve n element using merge sort technique. 
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Now, another example for divide and conquer is quick sort so, you observe that in the 

case of merge sort, what do you did, we divided the sequence into two equal parts. And 

the first one we call merge of the first part and the merge of the second part of algorithm 

then, you merges. 



(Refer Slide Time: 32:27) 

 

Now, in the case of quick sort, it is little difference suppose, you have x 1, x 2, x n now, 

what we do that we take the first element or one of them, random you can select. But, for 

simplicity, you select the first element as the partition element. And what it does? This 

element is huge, to find its position with reference to x-axis; so if we divide or we get the 

exact position of x 1, exact position of x 1, if I sort, if this sequence is sorted, by some, 

by some technique, we partition this sequence into the two parts in such way that, x 1 

gets its position in the sequence, satisfying the property of sorting, agreed. So, I get the 

position of x 1 here in such a way that, all these elements here are smaller than these 

elements and all these elements here are larger than these elements. 

That means what, we select one element say first element which we termed as a partition 

element and this element gets not only gets position in the sorting sequence, also all the 

elements to where of this side or of this side are larger than this elements and none of 

them is smaller than this elements. Then, you require some equal, quick sort of this part 

and quick sort of this part finally, you have one element because, know how to partition 

say, I have a sequence partition say, partition A m and u. 
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What it means that, you have a m a m plus 1 a u, I put a pointer here and I put pointer 

here. Now, a m is compared a m is compared with this first element, if you find that this 

is smaller than or equal, you retain as it is. You move the pointer here now, this element 

is compared with this, if you find that this element smaller than a m, you go to the next 

pointer, next element. 

You find this element is smaller than this element, you go to the next one now, if you 

find this element is larger than this element then, you stop here now, you starts searching 

from this side. Now, if you find it this element is larger than a m, you go to the next one 

you find that this element is larger than a m, go to the next one and so on. Finally, to get 

into a position where, this element will be, you make at a position where, this element is 

smaller, then this one. 

So, you will touch this two you will touch these two and then, you proceed again so, 

finally, you will get a position here where, it is crossed over. So, you will touch this 

element to this one and so, you will find that a m (( )) position. And all this elements, the 

small of these elements, all this elements should be smaller than larger than this element. 

Now, since there if I consider the size is n then, I need n plus 1 comparisons so, this is 

the idea of partitioning element then, the idea of partition algorithm, which takes n plus 1 

you need of time. 
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If I have to write the algorithm then, I can write this way say, v equals to A of m and I 

equal to m then, do i is increase by one until A of i is greater than equal to v, do u is 

decrease by 1 until A of u is less than equal to v. If i is less than u then interchange 

interchange a of i be a of u. 
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After doing this, you repeat till there is a cross over that is, i is while while i greater than 

i less than n, less than equal to n, you do all these things. And then, you have A of m is 

equals to A of u and A of u is equal to your v. So, this is your partitioning elements, 



partitioning algorithms and obviously than this takes order n plus 1 unit time to do the to 

get the partitioning position to get the position of x 1, it is sub sequence of n element. 
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Now, if you have to write the quick sort algorithm so, you have quick sort A p q that is, 

we looking part to sort A of p to A of q. 
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Here, one to remember, I forgot to mention that that instead of, u it is u minus 1 instead 

of u, it is u minus 1 that is, we are partitioning the sequence from a m to a u minus 1.  
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If p is less than q if p is less than q then, j equals to q plus 1 q plus 1 and then, i call 

partition partition A p and j, then you call quick sort A, p, j minus 1. Because that means, 

the position, first element first position that is, p at position has got its own position, 

which is j. And then, you get quick sort A, j plus 1, q. 
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So, idea is very simple that, what happens that, this is p and this is q so, i get a j, this A p 

moves here all this elements fall of the p of the (( )) and as long as p is less than q, due to 

the some partitions. Now, this quick sort algorithm is worst, can you tell me when, you 



observe that this complexity is depended on that partition, take this. So, we are assuming 

that assuming that the j is here but, is so happens that, all the elements all the elements of 

this part are larger than this edge then this quick sort will not have any meaning, because 

because that does not exist any elements in this side and you have remaining n minus 1 

elements to be sorted by this. So, again next intention, we may have if all this elements 

are larger than these elements and so on. 
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So, in that case what happens, if T n is the time complexity that, you need order in n 

times to partition and size is not reused, only one element is one side and the other side 

there is nothing, no elements right. This side no element, this side you have n minus 1 

elements so, we have T n plus T n minus 1 plus T 0, T 0 is 0 so, you get next time T n 

minus 2 plus c n minus 1 plus c n right. Next time again no elements in one side so, you 

get so, we have n n minus 1 c 2 c 3 c n, this is one; one means T 1 T 1 is 0. 
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So, you get c, 2 plus 3 plus n, which is order n square so, in the worst case, it comes 

order n square. Now, invalid what it means, that when the elements are in increasing 

order or decreasing order, you will find that partition routine will give you, not give you 

that good partitions, it will find that one side you have n minus 1 elements, the other side 

you would not have any other elements so, the complexity in the worst becomes order n 

square. Now, what is the best case, can you tell me, the best possible case is when the 

partitioning elements divides the two sequence divides the whole sequence into two 

equal parts. 
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In that case in that case, the time complexity becomes becomes c n into 2 times T n by 2, 

if it is c n plus 2 T n by 2 so, I can write c n plus 2 times, c n by 2 plus 2 times T n by 

four. And this becomes c n plus c n plus 2 square T n by 4 right and you can show, this is 

nothing but, c n log n, which is order n log n. So, in the best case, it is order n log n in the 

worst case, it is order n square. 
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Now, let us try to find out the average time complexity or average number of 

comparisons you need in the quick sort. Let us assume that, T A n is the average time 

complexity this is the nothing but, c n is a time for the partitioning, plus 1 by n. Actually 

to be in exact, it is n plus 1 and it is 1 plus n summation say, T A of k it should be k 

minus 1, T A n minus k,  this is k minus 1. 

k is 1 to n, what it means, that you are partitioning it, this is k so, if it is k, your value 

remains so so, this side it is n minus k, this side you have k minus one and k can be 1, k 

can be 1 2 n k can be 1 2 n. So, that is the time complexity, average time why 1 by n you 

are assuming, they are equally likely so, that is why, it is 1 by n. 
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So, this gives you basically n times T A n equal to n into, n plus 1 plus 1 by no plus T 0 

T 1 T n minus 1 plus T n minus 1 T 0 this is nothing but n into n plus 1, 2 times 

summation t, this is T A 1 T A 1 plus T A 2 T A n minus 1, T A i, i is 1 to n minus 1. 
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Because T A 0 does not have any meaning, not only T A 0 does not have any meaning, T 

A 2 also does not have any, T A 1 does not have any meaning. (( )) T A 0 is equal to T A 

1 is equal to 0 so, i take, i equal to 2 to n minus 1. 
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Now, I want to solve this, we have to solve this, let us replace n by n minus 1, what i get 

n minus 1, T A, n minus 1 equal to n, n minus 1 plus 2 times, i equal to 2 to n minus 2, T 

A i. 
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When you if subtract is it, i get n T A n minus, n minus 1 T A, n minus 1 here, we get n 

square n square get cancel, 2 n 2 n and here, i get plus 2 times T A n minus 1. 
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So, if i bring this element this side, I get T A n equal to 2 n plus n plus 1 T A n minus 1 

now, dividing both sides by n into n minus 1 n plus one that is, i get T A n by n plus 1 

plus 2 by n plus, T A n minus 2 by n minus 1. 
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This gives the 2 summation over 1 by k, k equal to 3 times so, plus T A so, if i write here 

3 if i write here 3, this becomes 1, this becomes 2 so, T A 1 is 0. So, this is equal to 2 

times summation k equal to 3 to n plus 1, i by k this is less than equal to 2 times 

integration 2 to n plus 1, 1 by k d k. 
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Then, that equal to 2 times log k and n plus 1, 2 that is, 2 times log of n plus 1, minus log 

two. So, that is T A n is less than equal to n plus 1, into 2 times log of n plus 1 minus log 

2, which is order n log n. So, average time complexity to solve n elements using the 

quick sort technique is order n log n. See this am could have above in it, just to just for 

the completely say, I felt that I should tell you, how to compute the average time 

complexity of n algorithm. 
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Now, let us consider another example, which will be the last example today and actually 

you have you have been taught algorithm, which is finding the k th element, k th smallest 

element of n element. This is disagree to blum’s technique and I think I do rub it, do you 

know any algorithm search? No right. So, let us consider this algorithm and let us try to 

understand of it is been designed right. 

See one way is that, you first find the minimum elements then, you find the second 

minimum element then, you find the third minimum element and so on. Instead of doing 

that, let us change from this point of view that, you have the n element, these n elements 

are divided into n by 7 groups. And each group is having the 7 elements except first and 

the last group, which may have one or two sorting may be (( )) may not, if divisible by 

seven and you can padding it by a large number. 
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So, you divided is given by seven groups and each group is having 7 elements. 
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So, this side we have n by 7 groups and the 7 elements is those now, in the constant, we 

will use the constant amount of time, you can solve these 7 elements of each groups 

right. So, you solve each group in constant time so, there n by 7 so, your type of order 

becomes order n by 7. Now, this is your median element, these are all median elements 

of this groups now, find that we say, find the k th element, you find the median of this n 

by 7 elements. 

Because, you can call that, one finding the median of the n by 7 medians right, as you are 

surely finding the k th element now, these median let us quality n, this is the median of 

median. Now, this median of used to partition to partition these whole sequence into 3 

groups, one all the elements smaller than these, another group is all the elements equal to 

these, and another is all the elements larger than these. 

So basically, you will partition 3 groups, one is all the elements all the elements smaller 

than these, of the all the elements equal to this and all the elements equal to this. When 

you observe that, if the number of elements smaller than these, smaller than these median 

element, if your find this more than k then, k eth element is lying here. And if you find 

no, are the element this size of, the size of this number of elements of number of smaller 

than this is smaller than k, the smaller than k. 

But, in but, if i find the number of elements equal to median number of elements such 

that, this element is equal to, k is equal to the need no of element. And which are equal to 



the median elements plus number of elements less than equal to the median elements. If 

you find that, is greater than k greater than k then, the median element is the k eth 

element otherwise, k th element is lying in this zone. So, you reduce the searching zone 

accordingly now, one thing again assured that, at least 25 percent of the, size of the n 

may be discarded at any instant of time or at any iterations. 
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This is because of the fact that because of the fact that, all these elements will be smaller 

than this element and all these elements will be larger than this element. Now, here since 

this is the median so, this is you have the half of the, there is n by 14 elements smaller 

than these and this side also n by 14 larger than these. Now, this side again that half of 

this side will be larger than the is smaller than this, half of these smaller than this, half of 

these smaller than this. So, this is giving the 25 percent elements smaller, atleast smaller 

than this and the 25 percent will be atleast larger than this and you can draw a conclusion 

on this part. So, it can giving you the assurance that, atleast 25 percent of the half n 

elements, you will be discarded at any instant of (( )). 
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You know the point of complexity, if I had the T n k is the time complexity, to find the k 

eth element from the n elements. So, first you may bring the sorting of each group there 

are there are n by 7 groups so, time is order n by 7 and after that, you will be calling the 

median of median elements. So, basically, you have n by 7 and k is n by 14 and after 

finding that, you will be discarding 25 percent, your size becomes T, 3 n by 4 and then, k 

and the solution of this is order n. 
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I am not discussing how to solve it because, it is two dimensional recurrence relation, 

which I do not want discuss in this class. Another example for the divided and conquer (( 

)), which is matrix multiplication here, I will not discussion in detail. Suppose, here the 

two matrices and you partition it into two parts so, this is suppose, you have A 1 1, this is 

sub matrix A 1 2, 2 1 and A 2 2. 

You have B 1 1, B 1 2, B 2 1 and B 2 2 then, C 1 1 is compute can be computed, by 

computing that A 1 1 dot B 1 1 and plus A 1 2 and B 2 1 right. Similarly, you can 

computing C 1 2 and C 2 1 and C 2 2 so, this can be done recursively using the divide 

and conquer strategy that you can try at home. In the next class, we will be discussing 

about the other strategies, if possible in the next class, we will be talking about greedy 

method, dynamic programming and if time permits, little about the back back tracking. 


