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Whereas for the Riemann surface for log. But I did not get time therefore you get a home 

assignment. So, all you need to do is to stag them together and make a paunch cut to the 

center together. So, that you get perfectly a line paunch cuts and then stick them together. 

One more home assignment, something which I thought of hand wave not sort of, 

completely hand wave last time and none of you caught me there. So, let us refresh your 

memory. What I said last time was, there you take. And I think I started from here. Take a 

point z naught here, which is at this point and write the power series of log around z 

naught.  

So, look at the disk around z naught and there I said that this disk actually intersects, goes 

beyond or goes above the real axis and then I also said that once the moment goes above 

the real axis. This power series coincides with the log 1 z definition. But I did not prove it, 

I just said it does and none of you pointed out also. So, as a punishment for that you get 

this home assignment, which is to take a point, look at the disk take a point z naught, oh 

sorry z 1 here. What would that be? And or let us make it simple. There are too many 

negative signs here. So, it is just slipping this you have to approach from here this is at pi 



minus epsilon and this is at as you traverse further down you get pi plus epsilon. And let 

log z around z naught be of course, you know what it is i pi minus epsilon, and we saw this 

last time all of this k greater than equal to 1 minus 1 to the k minus 1 divided by k z minus 

z naught to the k o k. Now this disk hits z 1 as well, and then what I want to say is that 

look at the disk around z 1 on that disk this power series will coincide with the power 

series around z 1 and the way to prove it would be, to show that this is equal to i pi plus 

epsilon plus k greater than equal to 1 minus 1 to the k minus 1 over k that is the power 

series around z1 to it. Need to show these two are equal. Of course, this equality holds for 

zs also. Only which are reasonably close to both z naught and z 1 for assuming all of this. 

So, prove that. So, this clearly establishes the fact that the power series they around z 

naught coincides with the power series around z 1. And therefore, that is certainly not the 

power series given by the log 0 z at z1, because for log 0z at z1 will have a minus epsilon 

plus pi here o k good.  

So, now let us continue we will discuss a little bit more on this. So, this remann surface 

where we get for log z it is again a mental construct to allow us to nicely visualize 

mapping log z. Right that is you can instead looking at infinitely many logs function. You 

can always look at a single log function sending this Remain surface to the complex plane. 

Now, one could argue that this is as arbitrary as that cutting of infinitely many log 

functions. You could start at any point make any branch cut at any angle and then you will 

get different set of all infinite classes, but in one very interesting way. Remain surface 

associated with log z is not arbitrarily it is really extremely useful, besides allowing you to 

imagine the mapping log z in a nice fashion it is actually useful in a very more or as a 

much more concrete sense. 
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So, let us see that ok. Now I am going to work on the cautious theorem. What is this? This 

is integral around that is not less than equal to 1. This is integral around the unit circle of 1 

by z. What does cautious theorem tell us 2 pi i right because cautious theorem in general 

says f z over z the integral around a disk where f is analytic is 2 pi i times a f or likely z 

minus z naught as f z naught . So, here it is z minus 0 gives us f 0. I can view this integral 

in another way, 1 by z is differentiation of log z and we have established that, it holds over 

all complex time right. So, 1 by z d z equals d log z. its d log z by d z times d z and d log z 

by d z is 1 by z o k. So, integral of d log z is what log z right and then there is a circle of 

course. Now in the circle there are no limits.  

So, one can see that there is a bit of an issue about how do you exactly define this business 

of limits here that’s one thing. Secondly, log z is not properly defined over this entire circle 

any way. Again thinking of log z over the complex plain and here let us say thinking about 

the differential. Now differential the log 0 z by the way differential of any variant of log 

function log one z, log 2 z, log three z, log 0 z. .The differential is always 1 by z because; 

the difference between any of these variants is only in the constant part. And that gets 

wiped out by differentiating. So, this differential is not defined at the branch cut. So, there 

is one line of in case how was the negative real line start defining. So, can’t really integrate 

in the whole this. Both of this problem can be resolved in the following way we can say. 

We can integrate from z equals e to the i minus pi plus epsilon to e to the i pi minus 

epsilon. Now in this sort of, where this is the starting point and this is the ending point and 



in this region this is perfectly defined. And this also gives me a starting point and a 

differential point. Now by cause e while I have clear it do not would mean cause e would 

this is fact use the analysis of log z function to say that this integral is this log of this minus 

log of this, which is two pi i minus two i epsilon. And as epsilon goes to 0 this becomes 2 

pi i and that matches perfectly with this coshee’s formula.  

So, we could do this through roundabout way of integrating and get the same value, but 

that is not the end of story. What about, or let us say in general t by z d z. What about this 

is clearly by the (( )) 2 pi i t. So, I just write 2 pi it, but if I write it in the same fashion this 

is equal to d log z for t right. This is simple verify it differentiate that for t you will get t by 

d z yeah fine. And now if you try to do the same thing we will fail why, hear the z moves 

around this unit circle in the counter clock wise, but we are taking log of not z, but z for t. 

So, if z moves around a circle in counter clock wise what happens to z to the power t; z to 

the t will move at t times the speed of move z. So, when z will complete one circle z to 

power t will complete t circles. And now we are taking log of that function which is 

actually the completing t circles. So, we cannot really do any limit because there is no two 

end points as such here which we can take a limit and get around this. So, we can’t 

sensibly discuss this integral over the standard view. That log is infinitely when you log 

maps one each from a complex plain with a branch cut to a complex plain. So, it if you 

adopt that view you we can’t really do this integration. 

 How were if you adopted remain surface then t circles are fine because every time 

complete a circle you move up. So, you are spiraling t times up. And as you spiral, the 

definition of log changes right you jump to the next log function. So, as use u do it t times 

you will make t jumps fine. So, this is same as integral z for t starting from and now we do 

not need to start from here just to make life simple we can start at one start from here and 

do t circle and as you two one circle where z for t goes e to the 2 pi I. And to do it twice, 

thrice, t times we reach here right. Now of course, this is all same there is no difference 

between these two values, but when talk out taking log of this and because as every time is 

circle around the change the value of log function itself the first log function we start with 

is the log 0. So, log 0 1 is 0; log 1 over 1 is 2 pi; log 2 over 1 is 4 pi i. So, as you do a t 

time circle. So, this would therefore be 2 pi this is log t of 1 minus log 0 of 1 which is 2 pi i 

t. Other has perfectly matching with the coshee’s theorem. So, this allows us to view the 

integral in this different fashion and still make complete sense out of it. Of course, in this 



simple case because we can apply coshee’s theorem directly here we get the value of 

integral without any problems but, when there more complex functions sitting here instead 

of z to power t let us say there is some f z sitting here then integrating. So, you do this and 

come here you get f times z and over b z and integrating that over a circle may not be very 

easy.  

On the other hand if you take this vie and you look at d log f z. Then all we need to do is as 

z varies we need to count or see how many times does f z wind up or wind down. And that 

will give us the value of the integral. Without worrying too much see all we need to do is 

to count how many times it wound up. I do not need to worry about exactly what path does 

it follow while winding up, because by coshee’s formula all parts will lead to the same 

integral, because it is an analytical function. So, just need to see that as z moves around a 

close control. Again this need not be a circle it could be any close control. As z moves 

around this close control how does f z move. And how many levels does it go up the 

minute we calculate the levels we got the integral. So, it provides a very convenient way of 

integrating the integral of this kind f prime z over b z. And when we look at zeta function 

this will occur very regularly. So, we need to understand this well, yes. Typically what we 

will have is that the function will be f z here. 

(Refer Slide Time: 22:24) 

 

So, let us look at this. So, there will be some closed surface. Let us say some bolt again 

delta r d log f z. So, that kind of integral we will see. So, here let us say that z moves 



around the boundary of r. This is z is a complex plain, just moves around the boundary of 

the complex plain fine. Now z is first sent by f to f z. Now, off course z sent f z to just a 

complex plain, but instead of viewing f z as laying on the complex plain we think as on the 

remain surface, because there is a log sitting after this. And we calculate how many times 

does f z as z moves around this how many times does f z wind up around some point 0 that 

is it only yah around 0 is a k. How many times does f z wind up around 0? And that 

number. So, it is convenient to view f z as lying on the remain surface, because winding 

means going up in a circular fashion right. And that number is the value of this integral. 

That number ties to pi i first. So, it is still a mental construct. You can still view f z being 

on the complex plain you can still do this integral by say the pointed out by taking the 

limit. Cutting out pices where log is not defined, but it is far more convenient on thinking 

on this line on remain surface.  

So, all you need to do is study this map z to f z to evaluate the value of this integral. An as 

you see as z moves in a circle. How does f z move around 0 not clear? You can also think 

of; if you do not want to think of remain surface. You can just think of f mapping complex 

number to complex number and in the complex plain itself you see how the f z moves 

around 0. Does it wound one time, does it wound twice, and does it wound three times. 

Like the z to the t wounds three times around 0. Has it moved once around 0? So, that is 

perfectly fine view and you can immediately conciliate the value of this integral. But to 

justify that this is the value of this integral we have to say that f z is actually lying on 

Riemann surface, because then we can say that log of f z is completely defined over this 

circle. So, the Riemann  surface provides a way of justify the value of integrate. So, now, 

we have studied the analytical functions. We have also looked at the power series 

expansion of analytic functions and we know now that every analytic function around 

every point expands as a power series inside a disk.  
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So, analytical functions can be defined in a strange domain. But, there will be sort of this is 

the domain of analytic function. Then in any point there will be disks over which a power 

series represents the analytical function. And the size of this disk can be inferred easily. 

You start at a point at the centre and you blow up the circle as much as you can. Until you 

hit one of the boundaries of the domain. And that is the size of the disk on which this is 

well defined. On which this uniformly converges with power series and it is equal to the 

function. And in this fashion, you can keep on defining this. So, one thing is clear that if it 

is a finite domain. No it is not clear that you will have, that is not necessary that you will 

have only finitely many disks here. It depends on the boundary. If the boundary is messy, 

you may end up having finitely many disks required to capture all of this. So, this is nice. 

But, this is still a little unsatisfactory and reason is that first is that this power series 

expansion what it says that, outside the disk everything diverges. On every point outside 

the disk it is certainly not absolutely convergent. So, it certainly diverges absolutely. 

 So, it does not quite allows us to study properly is should say, the similarity of analytical 

function. Certainly by definition analytic function cannot be singular in its domain, but 

there are certain points which are outside its domain on which the analytic formation is 

singular. Now, behavior of analytical functions around those points is not that properly 

expressed by the power series expansion. Let us take an example. Let us take this function 

the simplest power possible such function 1 by z. It is just has one singularity f z equals to 

0. And if you, through this domain is the entire complex plain except this point, this 



puncture made at z equal to 0. And that is a domain on which it is analytic. Now, if I try to 

write this same function at the power series around this point, then z equal to 0. So, what I 

can do, I put a circle here which converges every year inside this power series expansions, 

but which touches z equal to 0. So, it is not defined than I have to cover the remaining 

regions. Other regions I have to define other circle, another circle.  

So, I have to define multiple circles each capturing the part of the behavior of the function 

around the singularity. So, there are times when this is good enough, but there 3are times 

when one would like a simple and one single representation of the behavior around the 

singularity. And for example, this function, this representation itself completely defines the 

function around the singularity and anywhere else, but of course this is not power series. 

So, that is the problem, but this also says the solution. That instead of just sticking to 

power series if you relax our requirement a bit and allow the inverse polynomials also to 

occur in the power series, not the power series, in the more general series. There at list 

certainly for this function we can write the entire function as a single such series. And that 

gives rise to the notion of Laurent series. So, this is the last concept before we dive into the 

beta function this Laurent series then its discussion for singularity is will complete the 

complex analysis.  

 So, Laurent series is defined as a. So, Laurent series is a infinite sum of this form, the only 

difference with power series is that we also allow negative part of these to occur. So, 

infinity value negative powers, infinity value positive powers. This is clearly a Laurent 

series. Now, as with power series we have to understand where is this analytic? Clearly 

this is this is more general in all power series. Powers, every analytic form function we can 

write can Laurent series where it is analytic so that is clear. So, we need to understand 

exact way is Laurent series convergent. So, let us start with this as Laurent series and split 

into two parts. This part is a power series and this part is a pure negative power series. And 

let us give it certain names; this is f minus z plus f plus z. For f plus z we know precisely 

where this is convergent there is a disk associated with this where this is convergent. What 

about f minus z. f z is convergent inside and whenever is write convergent I mean 

uniformly convergent because that is the only notion of power series that we will be 

interested in. Inside say some disk z equals alpha. By the way, I have again eaten up the 

more general form here. It should be z minus z naught to be the k. So, we are expanding 

series around z naught.  
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So, let us assume x s z naught 0 here. So, this we know what about this. All those are the 

negative powers of z, purely negative powers. So, if we flip z and replace it with 1 minus z 

you get a power series. So, we know precisely where this is convergent. Now instead of z 

let us write it as 1 over w. This is convergent inside some disk w equals beta right. So, this 

implies. This taking z to be one over w this is convergent outside the disk mod z equal 1 

over beta; w is 1 by z. So, we replace 1 by z here , mod w replace it by 1 over mod z and 

then we get z equals one over beta and the inside gets flip to outside. You can see this 

clearly while I was writing; by replacing equal to by less than equal to. And that’s it we 

know precisely the convergence of these two parts. So, therefore, f z is convergent in this 

annulus. Annulus is the name of this disk where smaller disk is taken out from inside. Yes 

it is possible then it is no where convergent. Then it is really not very nice definition 

having made. So, it will make sense only when one over beta is less than alpha only then 

there is some region of convergence for the Laurent surface.  

Now, coming back to this example; what is annulus for convergence for this 0 to infinity? 

So, it is basically convergent everywhere except this single point 0 because that is 

punctured out and that becomes annulus. Now, outside this annulus is this convergent, can 

it be convergent any where no why while if you look at outside this annulus go beyond 

alpha; going beyond alpha this part is convergent that’s not a problem. So, this is some 

finite value. Take any point z which models is bigger than alpha. This is absolutely 

convergent it is some finite value, but this diverges. So, sum diverges similarly inside 



below 1 minus less than 1minus beta this diverges, this converges. So, sum again diverges. 

So, again exactly like power series it is convergent precisely inside the annulus and 

nowhere else. So, again this is limited in that function, but less limited than a power series, 

because this is a living example here. You can capture this function just by one single 

Laurent series as suppose to many, many power series that you need.  

In fact, to capture this function as power series in the entire complex plain you will need 

infinitely many power series, because any power series from any point in the complex 

plain can only be able take out a finite region from the complex plain. So, is a more 

general and most powerful form of representation of an analytic function? And it is pretty 

straight forward to show. That any Laurent series inside the annulus of convergence is 

analytic essentially the same proof that we used for power series carries. So, for in do you 

remember the proof how did we show that any power series inside is this of convergence is 

analytic. Essentially the same proof that we used for power series carried so far here. Do 

you remember the proof? How did we show that any power series inside its disk of 

convergence is analytic? So, what we did was we looked at function of power series. Limit 

the sum to a finitely many one that is a polynomial.  

Polynomials are analytic we know right and then when you take the limit, because of 

uniform convergence they analyst is blizzard because that is by modules theorem when 

you use because every polynomial is analytic. So, the integral around any rectangular is 0, 

and then you take the limit of these polynomials which is the power series and due to the 

uniform convergence we can scrap the summation or integration. And therefore, we can. 

So, that is the proof for analyticity of power series and the same proof really goes through 

here, there is no difference. So, I will not prove that I will leave that to you to work out. 

Instead what I will prove is just like we showed for power series that around; if you are 

given any analytic function.  

And around any point inside the domain we can represent the analytic function as a power 

series right on a disk. Similarly given any analytic function and given an annulus then 

inside any point. Sorry given any analytic function on a domain given any point inside the 

domain we can represent the function has an Laurent series inside a appropriate analysis. 

And proof is that pretty much mi mix the power series proof, but there is one nice twist to 

it that is why I want to show it you. For example, look here this is a Laurent series 

convergent on this domain right. This is a analytic function also on the domain inside that 



punctured complex plain. This is a Laurent series for the same function, and it is around a 

point z equals 0. That point is not inside the domain is actually a singularity. So, this 

Laurent series expression this one is around a point which is not in the domain; yet can be 

express a Laurent series around that domain. Inside the domain it always creates a disk. So, 

that is not really interesting anyway. Yea so anyway it is a law, because it is a power series 

hence it is a Laurent series. So given any z naught. Let us say, let’s try to write the 

statement and then prove it. So, given any point on that f z can be expressed as a Laurent 

series the around z naught, but it’s annulus of conversance will be inside the domain D. 

That we cannot escape from. 
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So, how do we prove this? So, suppose this is a domain and this is a point z naught which 

is actually outside the domain. Suppose if I take z naught then there is no annulus of 

convergence. Then it is pointless to define anything. No annulus of convergence which 

fully lies inside the domain. So, it forces me to pick a point which covered with a boundary 

of the domain and then I can try to define the annulus of convergence here. So, how do we 

handle this? Let us pick an annulus which consists of two circle which centers at z naught 

lying completely inside the domain d. And let us say this is alpha and this is beta. 


