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So let us talk about elliptic curves over Q. Actually yesterday we did part of it. So E y square 

equal to x cube plus A x plus B, A, B are rational numbers and 4 A cube plus 27 B square is not 

equal to 0. So these would prime p is good for E if P doesn’t divide. 
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And we define the zeta function for the elliptic curve over z rational, so unique as a product over 

p, p good of simply one minus a p p to the power minus z plus p to the power one minus two z 

that’s right, and times something else which is product over bad prime just for the sake of 

completeness let me give you what is p product over bad primes of 1 minus a p p to the power 

minus z. Very simple, but a p is not well define for bad primes ah that is not define the same way 

for bad primes. So this a p is actually without going (( )), it is either minus 1 or 0, depending on 

what is the type of badness. 

So the type of badness could be there is repeated that two roots would be or all three roots would 

be depending on what kind of badness (( )). So this is the zeta function for the elliptic curve 

where the rational. Like I said last time, this is closely connected with the Eermat’s Last 

theorem, (( )). So, what is the connection?  
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So let us start with that connection. What? 

Student: (( )) 

Professor: It’s depend on a type of badness, so when there are anybody have two types two roots 

would be or all roots would be, but within that there are classification. So Eermat’s last theorem 

is all of you know this is there is no integral solution to x to the n plus y to the n equal to z to the 

n for n greater than or equal to three. So how to do the proof (( )). Now I will just provide a very 

brief proof sketch. Assume that a to the n plus b to the n equal c to the n for for number integers 

a, b and c whose residues is one (( )). And n greater than equal to 6 ok. For n less than 6, you 

already know the solution, by the result 3, 4 and 5 1 can prove these in very simple methods and 

there are no solutions. With these are proved by (( )), proved it for equals (( )) in 4, 5 or like 

anything.  
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Now consider these elliptic curve, which is very simple and we define using this solutions, one 

of these solutions to be this equal to a b, we are using n b and make a to the n and b to the n, a to 

the n and minus b to the n two roots of the right hand side. Now for this curve, which is elliptic 

curve, it is discriminant, discriminant is same as the four a Q plus twenty seven b square. And if 

you remember that is non-zero if and only could be no repeated roots. So alternative description 

of discriminant in terms of root is, discriminant is delta F equal to it’s product of different sets. If 

any two roots repeat  in product is zero, discriminant. And it is actually easy to show that for an 

elliptic curve, the discriminant that the definition idea is equivalent equal to product of the roots. 

So what is the product of different roots of this curve? 

Well, one is zero, one root is 0 then other root is a to the n, the third root is minus b to the n. So 

the difference between a this two roots, a to the n, first two roots, 0 minus, minus a to the n, 0 

minus minus b to the n that is b to the n. And the third one will be minus b to the n, minus a to 

the n… ok So this is equal to a to the n b to the n a to the n plus b to the n, and because a b c is 

the solution of that formers equation, so a to the n plus b to the n (( )). So I can write to this a b c 

to the n, a b c is the integers. So this is showing that the discriminant of ah this particular elliptic 

curve is n eth power. So what (( )) that means many things but one of the things is the following 

theorem that if delta F, this is the more general theorem which is specializing for the case of this 

elliptic curve, delta F is l th power integer, then it has a point of order l. This theorem is 



conditional let us keep as it is sense, it is n eth power of an integer with point of order l. The 

point of order l is, ah the group associated with the elliptic curve right, which is group of rational 

point, these are all rational. 

At the point of order l simply means a point for that if we add the point to itself n times we get 0 

or infinity that is the identity of this. And no smaller number of addition will be infinity (( )). So 

the power of discriminant in relates to the order of a particular point that’s all. 
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And then there is a theorem miller theorem that if the F is modular, then so if the curve is 

modular which I will define so, if the curve is modular, then it does not have a point of order 

greater than equal to 6. So if we can prove that F is modular whatever that means then we are 

done. Because when we say that it cannot have a point of order greater than equal to 6. Therefore 

either all points of order less than equal to 5 or have infinite to all, it keep on adding the point, it 

never get infinity. 

So there is a point of, (( )) point of order greater than equal to 6, then discriminant cannot be 6 

for higher power of an integers by this theorem, which means in turn a to the n plus b to the n 

equal c to the n, there is no such solutions (( )). That’s the collection, so this ah whole part of 

these things were known already, but this was the this connection was put together by Frey in 

late eighties. I think he proved this non hiding away certain details, strictly speaking these 



statements I am making are not true, could approximately, there are some small small twist then 

one has to give even the discriminant description changes by (( )) divided by certain (( )), but 

will not get into this, just mix the whole thing will mix, without adding anything to our 

understanding. 

So the challenge at this point was can we prove F to be (( )). So what is it means, for a curve to 

be modular. So let us go back to the elliptic curves, and let’s go back to those the zeta function, 

so it is called zeta E, z of Q, if you remember last time we wrote it as also as a n by n to the z 

correct with certain multiplication properties of a n. This came out of the product form is which 

we expand it to get this form. So this is one series, we associated with an elliptic curve. And like 

I said the couple of lectures ago, there is another series we can associate with an elliptic curve 

which is the natural power series. So let’s define to be f E z Q. Instead of writing z to the n, I am 

going to write slight differently this is the Fourier series form of the power series. We can derive 

it naturally from the power series by whatever the variable in power series replace that variable 

by e to the two pi i x and then we have this Fourier series form. 

So these two we can see coefficients are really common to these two series and therefore there 

are some relationship clearly between these two. Now we so far looked at the zeta function, 

focused on this alternative form – the Fourier series of this. Can you identify some interesting 

properties there? There is one very simple, but nice property. The name Fourier series, (( )) 

periodicity, the function f is periodic. What is period? 

(( )) 
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What? 

(( )) 

One? One is any period of this function (( )) because f of z plus one that is n greater than equal to 

one a n e to the power two pi i n z plus one, ah which is n greater than or equal to one a n e to the 

two pi n z minus e to the two pi i n, (( )), so this is the periodic function, that’s why any periodic 

function there is an actual Fourier series. So that’s one(( )) obvious property of this function. And 

the another very interesting property which is so this function clearly is the way to define. Now 

look at ah what shall I say where is the function define. 

This function may or may not for various point on the complex plane, this function may or may 

not be defined. Suppose z is on the upper half of complex plane, which means the real, no the 

imaginary part is positive. So let z ah alpha plus i beta, and beta greater than zero. Then what is f 

z, a n e two pi i n alpha plus i beta.  
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So if you look at the absolute value of z f z is less than equal to sum over n absolute value of n, 

actually n is an integer, is the positive times all these course away. And this is n always positive, 

it is less than equal to summation n greater than equal to one, what is upper bond of the n like 

order n, a p is p plus one plus minus two square root p h, and the multiplicative properties shows 

there a p Q is a p times a Q (( )) p Q. And the a p square also, I am not giving the definition one 

can show the order p is one. So this would be order n, O n would be order n divided by e to the 

two pi beta this purely converges that because the denominator of (( )). 

The same argument can be used to show that when you are in the lower half of complex plane 

then this diverges, because then this would be positive and that will really shoot up no matter 

what their coefficient root (( )). And on the real line, may or may not converge depending on 

how these coefficients are sort of, so that’s the sort of the structure of the (( )) has been defined, 

essentially upper half of complex plane. Now comes the interesting transformation on the upper 

half of the transformation on the upper half of complex plane, which is called Mobius 

transformation. So here, H plus is upper half of the complex plane, tau z goes to a, b, c, d and 

determinant of a, b, c, d is one. So these matrices 2 by 2 matrices which determinant is one, they 

form a group, with usual identity and so on, (( )) under multiplication not addition. And this is 

very well-known group called the symmetry linear group ah (( )) size of order two. 
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So essentially this s l two is operating on this, so tau z is simply s l two operating on the 

complex, someone in this form. The interesting thing is this maps upper half of complex plane to 

upper half of complex plane. Tau z slightly some more ah a z plus b times c bar c bar z bar plus d 

bar z multiplied with complex conjugate. And what do you get here, now let me make a 

simplification here. Just make like simple, I just use this Z, because this is what I am going to be 

interested. So a, b, c, we are going to be integers, there is no c bar, no d bar. So this comes as a c 

mod z square plus b d plus a d z plus b c z bar… Now if you look at the imaginary part of tau z 

what is that. This is real, so this is for this contribute the imaginary part then they got the real 

part, the imaginary part of that bar is negative of the imaginary part of this, so you get a d minus 

b c times imaginary part of z divide by c z plus d whole square. Now a d minus b c by this 

definition is one. So this is imaginary part of z, divided by c z plus d whole square. So it is sign 

is exactly same as (( )). 

So that’s where I am going to stop, because I don’t have time; but tomorrow I am going to finish 

this half. So this tau is going, it’s very interesting transformation. It’s looks so what funny that 

you mapping this in this fashion, but it say the most general transformation that preserves ah for 

example circles. You make a circle and apply a tau on it, then look at the curve that you get, it 

will be a circle. If we take a line, then apply tau on it, what happens to a line, a line also goes to 

circle. So circles and lines together go the circles. So basically, in general like this, if we take 



two lines with certain angles, and look at the corresponding curves on the tau and point where 

the intersect, you look at the corresponding point wherever the corresponding tau curves 

intersect. Look at the angle of intersection there that the angle will represent and this is this how 

we can actually characterize the mobius transformation, all the class of entire transformation 

which preserve this property. So it is very interesting sub class of transformation which preserve 

lot of properties and these are going to be useful for us also, because the property that we want 

from this function f is essentially invariance under tau. So f of z or say f of tau z, you would want 

to be roughly equal to f of z not completely (( )). 


