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So, that is the course all about Riemann hypothesis, we will mostly be looking at one 

particular function. 
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This is the Riemann zeta function, the number s is the complex number and this is an 

infinite sum, which has many interesting properties and the course as I said will be 

devoted to understanding some of those. You will also look at once we have a good 

grasp of this function and now, its connection with many interesting objects like number 

of primes up to a certain range. Then we will look at generalization of this function in 

different domains and see what they say about those different domains. And finally, we 

will also look at the titles says about some applications of the zeta functions. Or I should 

not say zeta function application of Riemann hypothesis, I have not talked about 

Riemann hypothesis is which I all do latter. So, the hypothesis pertains to some 

properties of zeta functions and the hypothesis also has many consequences in various 

parts of mathematics and computer science. So, we will look at some of those 

consequences. 
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A very quick out line, some of you who have read the pdf file, which I have attached, 

would know this, will start with complex analysis. I am sure all of you have done some 

course on complex analysis, is that a correct assumption? And many of you have done it 

long time ago right. So, I can guess that many of you will not remember much beyond 

the definition of complex analysis, is that a right assumption? No, you know more? That 

is good. Then I will have spend less time here, what I plan to do is, to start with 

definition of complex number and develop the necessary tools, not necessarily all with 

the proofs, but give you a feeling of those tools in complex analysis, that we will be 

using in our analysis of this function. 

Fortunately it turns out that we do not really need too many fancy tools. So, it is going to 

be not too bad, but it is going take off some time of this course and that time very it 

contingent upon on how much you know or you remember about complex analysis. Once 

we have basic background will look at, well I have already defined zeta function, but 

zeta function and prime numbers. So, that is very critical connection that is how zeta 

function started its life when Riemann was trying to understand the distribution of prime 

numbers. So, we will show exactly what Riemann discovered this was a quite a 

remarkable piece of work by Riemann, I will get into details of that latter. So, let us stop 

it here. 



And then so Riemann also made a conjecture about the nature of zeta function when he 

did this study and that conjecture has still unproven after more than 150 Years. And there 

are number of mathematicians who have try to prove it, but failed and it is considered to 

be greatest unsolved problem in mathematics, there also happens to be one million dollar 

prize for anybody who proves this hypothesis. Then will prove prime number theorem, 

this is essentially follows from a weaker version of Riemann hypothesis that one can 

prove and from that follows the prime number theorem. Let us see how many of knew 

what prime number theorems? Number of primes exactly, number of primes this theorem 

says number of primes, less than equal to x is sintotacally x over log x. 
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So, this we can prove, in fact, this was proven more than 100 years ago, building on 

works of Riemann. Once we have done with all these studies we will move on to the 

generalization of Riemann hypothesis, which really come fall out of generalization of 

zeta function to other domains. And just as Riemann formulated his hypothesis for zeta 

function for those generalized zeta function one can formulate a similar hypothesis, 

which are called generalized Riemann hypothesis for extended Riemann hypothesis 

depending on which domain it is being generalized to.  

And we will look at some those variants there are huge number of variants, which will 

not have time to go into details of all. So, we look at some of the important ones. And in 

particular we look at generaliz 



ation to higher character, which we do not need to understand right now, elliptic curves, 

which again do not need to understand right now, if you do not know.  

And may be one more, but I will leave it at this point. And finally, we will look at some 

applications and since this course has a cs title, I will justify that by looking at some 

computer science applications here. So, that is the basic outline, any question? No. There 

is no text book, because it turns out that of course, there are large numbers of books 

written about Riemann hypothesis, zeta function connection with prime numbers, but it 

turns out that mathematicians have a way of writing or expressing their ideas, which I 

cannot quite understand. So, therefore, I will have sort of gone through, many of those 

put everything in my own way and which is what I will present.  

So, therefore, there is no book, I will be following chapter by chapter, but there are 

reference books, which basically says that everything that I cover is more or less in these 

books. Now, what are those? I did give couple of names in the let me see, if I can pull it 

out, this is a GTM series book two zero six problems in analytical number theory by 

Ram Murthy, Ram Murthy is one of leading number theorist in world. So, his he has 

written couple of really nice books on number theory. Then there is second book is the 

Riemann hypothesis, this is available on the web. So, it fairly easily access, there is some 

URL, which you can just Google up for this, this is by Peter Borwein, Stephen covey and 

Braden Rooney. 
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Exams; this is the first time, I am teaching this course. So, I really do not know how the 

assignments or exams will evolve, because it is very easy to make questions in this 

subject, which are very hard to solve. And if try to reduce the difficulty it very quickly 

becomes very easy to solve. And for examination one needs questions, which are sort of 

intermediate difficulty. So, I will make an attempt in formulating those questions, but it 

might turn out that there either too easy of too difficult, you will have to just suffer. 

There is really no other way out of this.  

Two exams, mid sem and sem, one of them will be take home well will discuss with you 

which one do you want to be take home. Assignments again, assignments can be done 

very easily here, because there are many things which, I will not go into details, which I 

will just leave out the assignment problems. So, assignments will be more of dynamic in 

nature that during the lecture as I ok, assignment problem number one, assignment 

problem number two, as we go on. 

Weight ages, assignment how much, if you take to want assignment, twenty percent, 

forty percentage, is that ok. That finishes of the standard beginning of every course, any 

questions on this? So, let us now began our study of zeta function, I did say that, I will 

first talk about complex analysis, but before jumping into complex analysis, let us spend 

some time in trying to see what this function is about. 
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So, this lets write it down again. Now, this function of course, has a parameter s an is an 

infinite sum, quite clearly if there are some values of parameters for which it does not 

converge. For example, what is zeta 1? What, l n 2? This diverges. In fact, you sum up 

you take s to be 1 and then you sum up n up to x; you will get about log of x. So, as x 

goes to infinity this diverges. 

What about zeta 2? That actually does converge and we will see latter on that it 

converges to as z pi square by 6, can anybody prove that it converges to pi square by 6. 

You know the proof, ya, Euler was the first mathematician to prove it. It has Euler 

proved it actually without complex analysis and when we look at complex analysis will 

find some really nice proof of this equation. Fine anyway it does converge that is whole 

point and this anybody can see it converges or can is that simple to see convergence of 

the series.  

Why does it converge? So, we are going even before complex analysis to math one o 

one, infinite series is converges, that is one simple way of doing it yes, basically this is 

approximately this integral. In fact, by setting it up properly you can show that, this is 

less than equal to this and this integral is easy to handle. And this is just minus 1 over x, 

1 to infinite, which is 1. So, zeta 1 diverges, where as zeta 2 converges. In fact, for all the 

same analysis will show that zeta s converges for all s greater than 1, where s is the real 

number not talking about complex number right now, the same proof works.  

So, that gives you some idea of what this function looks like. And of course, for s less 

than equal to 1, this is going to diverge again talking about the real line. So, on the real 

line the nature is quite clear at top level that for s greater than 1 it converges, for s less 

than equal to 1 it diverges fine. But the fundamental question is fine this is an infinite 

series of some form why should it be interesting? Why should we bother studying this 

series? 

As I been saying already that this as some intimate connection with prime numbers. So, 

this connection at least one of those connection was discovered by Euler. 
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And it is a very simple observation. So, let us call it a theorem proved by Euler, this is 

says that zeta s is equal to product over all prime numbers p of this quantity, 1 minus 1 

by p to the S to the minus 1, that is 1 over this quantity. 

Proof is fairly straight forward, all you need to do is to observe look at start from there. 

And let us, write it in terms of prime numbers and to do that let us notice that this sum 

runs all over integer sign. And by the fundamental theorem of arithmetic, this goes even 

before that right. I am going to high school and I am the sure all of you remember 

fundamental theorem of arithmetic, that is every number can be uniquely written as 

product or prime number.  

And so if you write that, we get n greater or equal to 1 product prime P, product over P 

to the, what should I write it? I going from 1 to lets say k n 1 by P i to the alpha i, where 

n is. So, n is written as product of this prime, so we just rewriting this structure again. 

And now, let us exchange the product and sum by observing that in this sequence take a 

particular prime say P 1, what all, in what all way does it occur, P 1 occurs in every n, 

which is a multiple of P 1. And more over, if P 1 to the k divides n and P 1 to the k plus 1 

does not divide n. Then it will occur as P 1 to the ks. So, basically for every prime P an 

every power k of the prime P, P to the k occurs in all multiples of, exact multiples of P to 

the k, that is P to the k divides n, but P to the k plus 1 does not divide n. So, we can write 

this is as the product over all prime P and then sum over all k greater than or equal to 1 



or zero. So, notice what I have done, this is product over all primes P sum over all 

exponents k of P and 1 over p to the ks. So, you take this sum and multiply it over all 

primes P and other way of seeing same thing is that you take any set of primes here, any 

finite set of primes in this product.  

Pick any for each prime pick any exponent k and you multiply out those primes with 

those exponents, those chosen finitely many primes with corresponding exponent, you 

get in number and that is a unique number. Right that is by fundamental theorem of 

arithmetic that, this number you get, because you have picked up a unique set of primes 

and unique set of its corresponding exponents you get a unique number and that number 

will be present here. And every such choice will create a unique number and every 

number n will be created by one such choice. So, that is the equalance, so this there is 

one more thing one is to do when we are doing manipulating infinite series is 

convergence. We have to be very careful about convergence before we do this.  

So, that is how this is convergence series, again for S greater than 1 as long as s is greater 

than 1 this each one of this is absolutely convergence. So, remember absolutely 

convergence, ok, good. And therefore, we can do this exchange. And now, it is pretty 

straight forward, this is product over prime P and this is familiar geometric series, which 

is equals 1 over 1 minus P 1 by P to the s. So, that expression connects the zeta function 

with some form of product over prime numbers. In fact, this tells us some very simple 

facts about prime numbers almost immediately. 
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For example, there are infinitely many primes, how do you derive from this theorem? 

Exactly set s equal to 1. We know zeta 1 is divergence and for s equal to 1 this product 

on the right hand side is 1 minus 1 by p to the minus 1, if there are only finite in the 

primes. Then this product will not diverge with each term is a finite number and there are 

finitely many products here. So, it does not diverge, but we have to be little careful, this 

equality only held when s is greater than 1. So, we cannot use this equality for s equal to 

1. So, although this seem like simple and direct proof, but this not quite correct proof. 

We have to be little more careful here, the same idea works, but what one is to say 

realize or do here is that we know that, this equality hold for any s greater than 1. So, set 

s to a number bigger than 1 and send it towards 1. As it tends towards 1, the left hand 

side is getting bigger and bigger and bigger, keep going towards infinity .The right hand 

side does not, if there are only finitely primes. In fact, you can place an absolute upper 

bound on the right hand side, depending on what is the largest prime number. And 

therefore, there exists only prime numbers. 

Let us see what more can we get out of this. Yes, currently it is all real s yes, we are not, 

that is right, solve for this. So, should I have mention that, when Euler started the 

studying of this function, him and there were previous mathematicians also, who always 

thought of this as a function over real numbers. The complex where not considered at all 

until Riemann and that was one of the great insight of Riemann to extend the domain 

from real to complex. And we will see during as we go along this course, the remarkable 



effect the simple change in perception had on the nature of this function on everything 

else ok. So, what more can we derive of this, can we say more about prime number? 

Well let us see, zeta 1 for s equal to 1, told us that there are infinitely many primes, let us 

just try out zeta 2. So, we know zeta 2 is bounded certainly, but is actually equal to pi 

square by 6, which is less than 2, some small number, that all we need to do. This is pi 

square by 6 again the exact number is not important here, only the fact right now will be 

using is this is bounded number. So, right hand side is bounded clearly left hand is also 

side is bounded there is no problem of equality here, because we are using s greater than 

1.  

How can we relook at this product in some way? Let me put it this way, suppose or let us 

consider this product n greater than 1, does this converge. So, how do we decide about 

convergence of series? What? That is one way of doing it yes. This, ya, this is of course, 

first two terms of cosine series, but that may not be that useful cosine is always this is an 

infinite product and one has to do error estimate and start clear, how bad that will be. 

One is to take convert into sum, take log right. So, from here go to and look at this 

convergence of this series, and this convergence of this will tell us whether this is 

convergent or not. Now, is this convergent? 

There are some simple criteria is to for checking convergence of series. One is to check 

the ratio of two successive terms. Yes, this, will this be less than or equal summation of 1 

by s square. The product of infinitely 1 is always still 1, but this is also product of all 

terms greater than 1 would they all they are, one has to see whether these terms are also 

tending towards 1.  

So, whether in the limit the product goes up or may be stays close to less than equal to a 

boundary. You saying compare it with summation 1 by n square, so this bounded by 1 by 

n square, what is log 1 minus x? That is x plus x square by 2 plus x cube by 3 and so on, 

is bigger than 1 by n square. Sequence these are all again tending towards 0, the 

successive terms get closer and closer to 0 as n goes bigger this inside gets closer and 

closer to 1 and log of that is close to 0. 
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So, let us look at ratio of two terms, I do not know if we can sort out, does not look very 

exciting. Let us try this out expand this, what is log 1 minus x is? 1 by n square there all 

pluses here. So, is it 1 by x square by 2 or x square by 2 factorial? x square by 2, so this 

is n to the 2 n to the 4 plus 1 by 3 n to the 6 and so on. And this is 1 by n plus 1 whole 

squared plus and so on. So, let us multiply out, this with n square, and this with n plus 1 

whole squared, so that we get, n plus 1 whole square by n square times 1 plus n times to 

infinite this ratio goes to 1 and this ratio also goes to 1 right. And what happens if the 

ratio of successive term is going to 1, does this series converge or diverge? Converge? 

What? Ratio has to be less than 1, then it converges, if it is 1 then it diverges. 
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So, this product actually diverges. Sorry, yes. At 1 you cannot say, so that is bad. And 

then I have to do more work, assignment problem number 1: decide the convergence of 

this product. And hopefully by tomorrow you will have decided and will continue with 

our work.  


