
Introduction to Problem Solving and Programming 

Prof. Deepak Gupta 

Department of Computer Science Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture No. # 18 

 

In the last lecture, we are talked about the notion of pointer and we saw that essentially a 

pointer is an address of a variable. And we saw the two operator which are related to 

pointer that is ampersand operator which given the operand as a variable is gives the 

address of that variable. And star operator are the pointer dereferencing operator which 

given the pointer value as an operand gives the contents of the variable or the location to 

which the pointer points. So today, we will continue our discussion on pointer by 

exploring the relationship between arrays and pointers 

(Refer Slide Time: 00:59) 

 

 In C there is a very close relationship between arrays and pointes and as you will see in 

some cases arrays and pointers can be used interchangeably. So, to begin with consider 

the following two declarations int A 20, so we are declaring an array called A of 20 

integer and then we are declaring a pointer variable p which is the type in star and the 

initial value of p is nothing but A. Now in C the expression A itself, where A is the name 



of the array is nothing but the address of the zero eth element of the array and therefore, 

the expression A and the expression ampersand A 0 are completely equivalent, which 

means that in this initialization, p is the initialized to point to the zero eth element of the 

array. 

So, in terms of pictures that we saw last time which help us understand pointers better. 

So, p is pointing to the zero eth element of the array A. So, essentially what are seeing at 

the expression A itself where A is the name of the array is the same or is equivalent to 

the address of the zero eth element of the array. Now recall that is not see we said earlier 

that the difference element of an array are stored at contiguous or adjacent memory 

location. So, for example, if the first element or the zero eth element of the array is at the 

memory location thousand and the each elements required four bytes then the first 

element could be at memory location 1004 and the second element could be at 1008 and 

so on and so forth. So, essentially viewed in that sense the expression A gives the 

starting address where the array is stored in the memory. 

And similarly you can see that since A and ampersand A 0 are equivalent, so are star A 

and A 0. This is because of star of ampersand x is always equivalent to right because we 

are first taking the address of variable x and then you have been dereference in that 

address. So, this always true and so therefore, star of ampersand A 0 must be same as A 

0 and which is nothing but A. So, therefore, what we get is at star A is same as A 0. Note 

that what does means is that both stars can be applied on the left hand side of an 

expression of in the assignment expression which will mean that the zero eth element of 

the array A is being kind some values. 

The expression A itself cannot appear on the left hand side of an assignment because that 

could been that the starting address of the array A is being changed which is not possible 

of course, because as you saw last time the address of the variable are fixed and they are 

assigned by the complier we cannot change them, but when A at define an address is 

stored in the another variable then the contents of that variable can be changed 

(Refer Slide Time: 04:31) 



 

 Now the next important thing to understand, if that even a pointer can be used using the 

array notation that is dereferencing using the pointer can be done, even using the array 

notation - provided that the pointer does points to an array. So, let us take a simple 

example. So, we have two declarations here again A is n array of five elements. So, that 

is how it is in picture and p is the pointer of type in star which means that this variable p 

will hold, the hold the pointer to some integer from the first assignment that is here is the 

assigned A. So, what happens to in this assignment executes the address stored in that 

variable p is nothing, but the. 

Address of the zero eth element of the array now when A 2 is assigned 3; you know that 

familiar to us what should happen is at the second element of the array A will get the 

value 3, but now what is the interesting is that you could move to the variable p as if it is 

an array and that is because it is pointing to an array element. So, when p 3 is done that 

could be the same as a matter of A 3 assigned 5 because p and A are phenomenon (( )) at 

that value of A of the value of the variable p is nothing but, the starting address of the 

array A. 

So, when p 3 is assigned 5 is executed; the third element of the array A is a find the value 

5. This is become hopefully more clear using more example that you see as selected 

progressive. 

(Refer Slide Time: 06:22) 



 

Now you can also pass array as an argument to functions and interest you have been 

doing that in the case of some library function for example, we saw the string function in 

the C, standard library for example, function is to find the length of the string and so on. 

So, there when we passed a string as an argument as we knew string is nothing but an 

array of character is the special property that it is terminated by another character. So, 

what we are passing to the string length function is really an array. So, what you want to 

next explore is what is happen when arrays are passed to a function, and how do we 

define such function and how do we call such function and so on. 

So, let us take a very simple example suppose you want to write a function to search for 

a given element in a given array. So, that is why we given an array of integer and we are 

given the number of elements in number of elements in that integer and we are given the 

particular value and we would not to search in the array for that value. And if the array 

contains that value then we should return the function suppose to written the index at 

which in the array that value used further, and if that value is not present anywhere in the 

array than the function should return minus 1. 

(Refer Slide Time: 07:39) 



 

So, here is what the function would look like most that n and e are integer parameter as 

usual. So, there is nothing special about them; n is the actual number of element in the 

array which is the past and e is the value that we need to search for. Now this is the array 

itself which is been passed, so what should happen in C is that when an array is passed as 

an arguments. What is actually passed to the function is nothing but the starting address 

of the array. So, the argument A here actually denotes nothing but the starting address of 

the array which is been passed as an arguments. 

So, the function itself is quite simple. So, we have a for loop and we examine all 

elements of the array if from 0 to n minus 1 and if for a particular value of i A i happens 

to happens to be equal e then e immediately return i because at the array index i the array 

A contains the value e note that the return statement would not just break out of the loop, 

but would immediately call the function to return. So, the next statement would not 

executed in that case. So that means, that if the array element that the value e was found 

somewhere in the array then this loop will not finishes as a matter of if and the return 

statement will call the function to return before the loop finishes, and so, if the loop does 

finish that implies that the array did not contain the value e at any place or at any index, 

and therefore, we should return the value minus 1. 

Two important points to note this is at the value of the parameter A in this function is 

nothing but the starting address of the array which is being passed as an argument. The 

copy of that array is not been passed and that also means that when we declare this array 

you do not need to specify the size of the array, the reason is that when the memory is 



allocated for this parameter A, the amount of memory required is the amount of space 

needed to store just one pointer value or just one address, and so, therefore, that is not 

depend on how many elements in the array that is being passed as an arguments have or 

there. And because of this reason, in fact, we could have return this function slightly 

differently instead of declaring A in this fashion e could have declared A in this 

fashioned (( )) and even then the rest of the code of the function would not made to 

change, because as we just saw even a pointer value can be used as an array right. 

(Refer Slide Time: 10:49) 

 

So, let see how this function could be called from some other function, let say the main 

function do that is not a important could be call from any function really. So, in this 

examples we have of two array A1 and A2 of size 100 and 200 respectively and from 

code initializes the value of the element of the array even in need to and also the values 

of the variable n1 and n2. So, let us assume that A1 has n1 elements and A2 has n2 

elements and we could use this same function search to search for some value in both of 

this array. The fact that the sizes of these two arrays is different does not really matter, 

because the actual size of the array or the actual number of elements in the array is been 

passed as an arguments and when the array itself is passed - that what is been passed 

really is only the starting address and that should be clear also from the rule about that 

we talk about earlier about how arguments are passed to a function. 



So, the function argument A1 would be evaluated in that case and we just saw that an 

expression denoting just an array name evaluate nothing but the starting address of the 

array. So, the expression A1 evaluates just the starting address of the array A1 and that is 

passed as the argument to the function search, and similarly in this case the starting 

address of the array A2 is passed as an argument. 

Let us consider now another example which modifies the array in which the function 

which is given an array as a parameter actually modifies some of the element in that 

array. So, let us consider a very simple example again in which we are writing a function 

which is intended to double the value of every element of an array. 

(Refer Slide Time: 12:51) 

 

So, here is what the function might look like and double array is the name of the function 

there is no return value and so the return type is void. The argument is an integer that is 

define how many elements are actually there are in the array A, which is the passed as 

the first arguments and the code is very simple. For all elements from 0 to minus 1 is the 

element of the array, we just double the array element using the star is equal to operator, 

but the question is whether the change is visible in the calling function that the values of 

the array that we have changed here in this function in this various elements of the array 

is at change visible in the calling function. 

We call that when we passed, when we modified lets the n integer parameter within the 

function then if the actual argument happen to be variable in the calling function then the 



modification to the parameter does not calls a modification in the variable which was 

passed as an argument to it because as we know copy of that variable of the value of that 

variable is made available to the parameter, but in the case of arrays no recall that if it is 

starting address of the array which is being passed as an arguments and not copy of the 

values of the element of the array. So, therefore, when this change is made to an array 

element what is actually happening is at the array element of the original array which 

was passed as an arguments that is being access by using its address and therefore, the 

change could be visible even when the function return to the calling function. 

(Refer Slide Time: 14:44) 

 

So, let us try to clarify the situation with the help of this example, where I have put the 

same function in the context of the calling function. So, let us assume that the function 

double array is being called from the function mean which has an array A of 5 elements 

and an integer variable i and this loop initializes all array elements of A from index zero 

to 4 to 4 and then it calls double array with A and 5 with the number of elements in the 

array has the arguments. 

Now, when the function call happens to this variable A is the same variable A of the 

main function and which represent this array of five element each of which has the value 

one and when this is pass as arguments to the function in double array. So, there the 

parameter their also calls A, but what this parameter will contain will not be this, this 



parameter a will not refer to an array itself, but a pointers to the zero eth element of the 

original array which was passed as arguments. 

Now, when this function executes let say the when this statements is executed for the 

value of i equal to 0, which means that A 0 star is equal to 2 is executed. Now what as A 

0 really mean? A 0 mean that the zero eth element of the array to which the pointer A is 

pointing note that in the context of the function. This A is not really an array, but it is a 

pointer. So, A 0 would refer to the zero eth element of the array to which the variable A 

is pointing and show. 

(Refer Slide Time: 16:33) 

 

When this assignment is executed the zero eth element of the original array A is modifies 

to 2, and similarly in the next iteration of the loop this statement will be executed and A 

1 will refer to the first element of the array to which the variable A is pointing which is 

different, and so, this will become 2. And so, finally, when the function double array 

return, this variable A will be destroyed and the control will go back to main, but in the 

main function note that the value of the array elements in a has actually changed. So, 

essentially what is happening here that when an array is passed as a parameter to a 

function is the starting address of the array that that gets passed, and in the call function 

it from the array element it is modified then because this value is modified using the 

address of the memory location written in this value, the change is visible, even when the 

function return to the calling function. 



Now this is different from when a normal integer variable is passed, because when a 

simple integer variable is passed the parameter gets it copied of the value of the 

argument and if the parameter is changed will be in the body of the function and that 

change is not visible in the calling function. 

(Refer Slide Time: 17:59) 

 

Let us now come to another relative notion and that notion of pointer arithmetic. You 

might be surprised to move in that in C, you can actually do some arithmetic with 

pointer. The arithmetic will allowed with pointer is very limited, you can add or subtract 

integers to or from pointer that is you can add an integer to a pointer of or you can 

subtract an integer from pointer. Now this makes sense only when the pointer actually 

points to some array element of some array. So, for example, if p points to the highest 

element of from array A then p plus j where j is an integer points to the i plus j eth 

element of the same array A, and similarly p minus j points to the i minus j eth element 

of the array A. 

Note that it is possible that is not pointing to an array at all or maybe then p plus j is an 

array actually does not have i plus j element or may be p minus j itself, the value of i 

minus j eth happens to be negative which means again the array does not have an 

element at that particular location. So, the computation of the pointer resulting from the 

pointer arithmetic will work, but when you try to dereference such a pointer which as a 



resulted from this arithmetic that will call an unexpected result and that will be similar to 

an array element being accessed with an index which is out of bound. 

So, for an example, if an array has n elements and if you try to access the n eth or the n 

plus 1 eth element or the minus 1 eth element in that say that is an error end result in an 

unpredictable behavior. And similarly if you try to obtain a pointer to the n eth or n plus 

1 eth element of the array or the minus first element of the array you can an obtain a 

pointer, but when you try to dereference using the star operator then the result will be 

completely unpredictable, and therefore, it is our responsibility to make sure that this is 

never happens that whenever we do the pointer arithmetic we always make sure that our 

pointer is pointing to a valid element of the array. 

 (Refer Slide Time: 20:23) 

 

 So, let see an example of pointer arithmetic now. So, in this example you have two 

again a variable. A is an array of 5 element and p is of type int star which means p will 

contain a pointer to an integer. Now the first assignment that happen is p assigned A plus 

1. Now what do think will happen note that the expression A denotes the starting address 

of the array A or in other words, the address of the zero eth element of A. And now if 

you add one to it; one is an integer. So, add one to the address of the zero eth element of 

A, what you get is the address of the first element of A. So, once this assignment 

executes p will points to the first element of the array A. 



Now in the next step, we have the statement p plus equal to 2 which of course, as you 

know is same as p assigned p plus 2. So, in this case again what we are doing is identify 

two to a pointer value and assigning the result back to the pointer variable p. Now p is 

the currently pointing to the first element of the array A. So, p plus 2 will point to the 

third element of the array A and that pointer value is assigned back into the variable p, 

and so, after execution of this assignment p will point to the third element of the array A; 

and in the next step we subtracting something from the pointer, we are subtracting one 

from the pointer which means that the pointer will move one step back in to the array. 

So, we will now start pointing to the second element of the array A. 

Now we doing something interesting we are p as an array and we are dereferencing from 

indeed from some pointer using the array notation, but note that p is not actually pointing 

to the zero eth element of the array. It is pointing to the some element of the array, but 

that does not really matter when we say p 1 is assigned 5 (( )) to happen is think of an 

array which starts here. So, think of p section of the array. So, when you are using p as a 

an array where p is the pointing to and from to the i eth element of the array, then p 1 is 

the same as p i plus 1 is p is same as sorry is p i plus 1 if p is the same as which is of 

course, (( )) A plus i. 

If p points to the i eth element then p 1 would refer to the i plus 1 eth element of that 

array. So, therefore, now p 1 is assigned 5 what will happen is that the first element of 

the array segment will become 1, and so, p 1 would be this particular cell which has you 

can see which is the third element of the array A and that follows from this kind of rule 

that we get so, if p is pointing to the second element of the array then the p 1 is same as 

the 2 plus 1 that is the third element of the array. So, p 1 is assigned 5 and the result in 

this element of the array A getting the value 5. 

(Refer Slide Time: 24:18) 



 

Let us now again talk a little bit about strings and see how strings relate to array, we 

already know that strings are actually arrays of character with the special property that 

the useful data in the string is terminated by a null character. And as a matter of that 

strings are very commonly used as pointers, because as you already seen errors can be 

used as a pointers so. Whenever in a functions like for an example print f we passed its 

format string as an arguments or in a function like str ln, we passes a string as an 

argument in returns the length of the string then we passes a string as an argument to a 

function what we are really passing the starting address of the character array that stores 

the string, and this follows just from the fact that this string really nothing but an array.  

And then we pass an array as an argument to a function, what is really pass is the starting 

address of the array. 

Now strings are also different from other kinds of array instances that it is possible to 

have constant string, for example, the constant string abc here. Now what kind of an 

array is that, now what happens to the constant string is that the constant strings are 

treated by the complier as anonymous array, anonymous means without a name. So, 

when you use a constant string in the program what happens is that the complier creates 

some space, somewhere in the memory which contains that string and the value of the 

constant string expression is nothing but the starting address of that array. 

And we should be careful here that different declaration different ways of declaration of 

a string in actually in a different string. So, now, that we know that the pointer and array 

can be used interchangeably, we could have this two times of the declaration for a string 



variable, but the behavior is going to be slightly different in these two cases. So, in the 

first case we are declaring a pointer variable p, which is initialized to the starting address 

of the constant string abc. In the second case, we are declaring an array of character 

called p which is been initialized to the string abc. So, in the first case which means 

progress in terms of pictures what is the look likes the calling; that abc is an anonymous 

array is created in the memory somewhere from the compiler which contain the string 

abc. 

The character abc follow by of course, a null character and this variable p a box is 

created for the variable p or a memory location is assigned for a variable p and that is 

initialized to point to the starting address of the anonymous array. Note that in case we 

can change the value of the variable p, because p is the normal variable of type char star 

and we can reassign to point to some other string. Now if you contrast it with the other 

kind of declaration what is happening in this case is at we are asking the compiler to 

create an array called p if no longer and anonymous arrays which is initialized which we 

will have four elements in it because size of the initializing string is four including the 

null character. And so, p is the main element of the array whose elements of the 

character a b c and the null character note that now p is the name of the array and 

therefore, p cannot appear on the left side of the assignment. 

So, p assign something would be wrong here in, which declaration where as p assigned 

some other things would be correct in this kind of the declaration because here p is 

associated with the points p is the name of the pointer variable, whereas here p is the 

name of an array itself now let us (( )) some of the string handling function that we talk 

about some time there. And we will see that t is very easy to write the string and in the 

function that we use from the library. So, as an example let try writing the string length. 

(Refer Slide Time: 28:50) 



 

Function our self and it will look straight forward isn’t to actually right function that is 

manipulated string and so on. As we know the functionality of the string length function 

is simple given a string you have to written it plan and we do that always do it, we have 

to count the character from the string till we find the null character and this count is the 

length of the string note that we length that we have to return should not include the null 

character itself. 

(Refer Slide Time: 29:24) 

 

So, here is the first version of our string length implementation. So, we are actually using 

the pointer which is past to the function as an array using the array notation. So, this loop 

initializes i to 0, and then as long as s i is not equal to null character which increment the 



i note that the loop body is empty. So, all that is happening is in this i plus plus and in the 

loop condition. So, essentially this loop will terminate as soon as we find s i is equal to 

the null character and then i will be nothing but the length of the array. Because note that 

we are implementing i one for every non null character that we find in that string. Now 

we could have written the same string handling function the same string length function 

using pointer arithmetic as well that is instead using s i to s is s element of the string 

higher character in that string we could have use something like star of s plus i which 

would be same as the s of i. So, we could have done that and even more interestingly we 

could have modified the value of the variable s itself in the loop. 

(Refer Slide Time: 30:44) 

 

 So, lets you get this second implementation of the same function. So, this time I have 

chosen to declare s as a char star which is supposed to be same as the declare in this an 

array within the function parameter, but I am going to use the s as the pointer does not 

use the array notation. So, in this version of the function note is being done use it again I 

to be zero that will be count and we are checking, whether s is pointing to the null 

character. 

Now star s is nothing but the value of the character to which as point and as long as that 

is not null we keep running the loop. The loop body is again empty, but after every 

iteration it will be low we increment i by one of course, to account or found for the non 

null character that we are just seen and we also instrument the value of s note that this is 



again s assigned s plus 1. Now this is not normal arithmetic this is pointer arithmetic 

because p is a pointer. So, what we are doing here interestingly is that we are modifying 

the pointer arguments that has been passed to us, but again note that this is the copy of 

the address that we have been given we are not actually modifying and element of the 

string whose address is given to us, but the address of the string itself and the address of 

the string that we have been given is actually copy of the original address from the 

calling function. So, it change to us will not get reflected in the calling program. 

Now this may not be obviously, but once we trace this function with the calling function 

and with the help of the notation that we have already seen using the box and the row to 

represent the variable and pointer this will become very clear. So, let us do and do that. 

(Refer Slide Time: 32:51) 

 

So, here is the same function again the strings length function that we had the string and 

let say this is the calling function. So, we use calling function you have a pointer t take 

this point p to the constant string abc. So, let us draw or familiar boxes and arrow. So, p 

is the pointing to the zero element of the anonymous array containing the character a, b, 

c followed by the null character and of course l is the normal integer variable. And when 

we are calling length with the argument p and the result is (( )) to l, so this two are the 

variables of the calling function now when this function gets called space is created for 

the argument for the parameter the parameter is s which is just A. 



Pointer and this will be initialized with the value of the argument which is passed. So, 

the value of the argument is the value of the variable p which we pointer to the zero eth 

element of the string. So, the value of s will also be big now when this (( )) i is the 

initialize to zero i is the local variable of the string length function. So, i gets initialized 

here and s is the already pointing to the zero eth element of the string now the check is 

made whether the star s is equal to null correct or. 

Not star s is nothing, but the character a which is not the null character. So, the. So, the 

loop body executes the loop body is empty at the end of the loop body this this 

expression is evaluated note that it is using the comma operator which means both the 

expression will get evaluated. So, the first expression could be evaluated is s plus plus 

which will mean which is of course, we saw is same as the s assigned s plus one which 

will mean that s will not start pointing to the first. 

Element of the character array and i will come 1, now the next time the loop condition is 

attested or s is not be still not be null character. So, s gets incremented again s starts 

pointing here and i is incremented i becomes 2 and then w are go back to the loop test 

star s is still not equal to the null character. So, the value of s is change to point in the 

next element of the character array and the value of i becomes three and then the loop 

test is executed again this time star s is the. 

Null character and which is. So, this test fail to the loop terminates and when the loop 

terminates the it come to the return state which returns the value of i which is three this is 

the correct length of the string of course, the value three is written, but now the (( )) of 

string length function will get deallocated and the control will go back to the calling 

function. So, one will obtain the return value which was the of course, three and the 

important point to note is that the modification of that has not resulted in the 

modification of the that of the variable of the value of the variable p the variable p is still 

pointing to the zero eth element of the original array. 

Now on the other hand, if you had modify an element of the array itself. So, for example, 

if we had executed a statement like this let us say x and let us say x that pointing time s 

happen to be pointing time to the first element of the string then this would have been 

modified and even when the function written and S for deallocated this string this change 

in the string would still get reflected, but here what is been modified if just the address 



which is been passed to us and since we have got an copy of the address this local copy 

within the sting length function is being modified and the original coy of this address 

does not get modified. So, that is the end of the lecture today and before we talk I would 

likely to utilize the technique that we have discussed today to try and implement some 

of. The other string library function that we have already used in terms of programs, for 

example, you could implement the string cat strcat function is to concatenate two string 

or you could implement this string comparison function strcmp which compares two 

string in the (( )) order. 


