
Course on Theory of Computation
By Professor Somenath Biswas

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Lecture 36
Module 1

Example continued. Finiteness of TM description, TM configuration, Langauge acceptance,
definition of recursively enumerable (r.e.) languages.

Let us now describe the Turing machine which will perform this conversion of unary

representation of a number to its binary representation according to the strategy which we had

outline.

(Refer Slide Time: 0:37)

So as an example think of this string of 1’s which is of course 5 in unary and we would like to

convert it to binary, remember that we will use for binary representation the symbols A and B

where A would stand for 0 of the normal binary representation and B will stand for 1.

So this is 5 and therefore what we should get here BAB which is 101 which is the binary

representation of this unary number. What we will do is we have the convention that our Turing

machine will start at the left most 1 of the this input string. So the Turing machine will start here

scanning this particular symbol, so let us see how we can carry out the strategy by means of a

Turing machine.

So let us say this is the initial state and in this initial state it is scanning this left most 1. Now we

said that as soon as this machine sees this 1 it will convert to an x, this 1 it converts to an x and

what should it do? It should move to the right, right? Skipping the next one etcetera. So therefore

this is a right moving state it comes to, and in this when it sees a 1 what should it do? It should

just go back to this state so that it can cross of the next one.

So and as it so remember that initial it was here so this was converted to x, right? And the

machine came here and in this when it sees a 1 it just skips that 1, so this 1 is written as 1 and it

moves to this state and in this state it should be scanning this particular symbol, so therefore now

we know that this also a right moving state. So this 1 is left is left as 1 in this state now it is

scanning this particular symbol which will be converted to x it comes here and in this state it is

now seeing this 1 so which will remain as 1 because 1 is not being changed, so 1 is being over

written by 1 itself and then it moves to the right therefore the head will be here scanning this 1

but this particular 1 will be converted to x, right? And it comes here having converted to x, right?

And then the since it is a right moving state the head will be under this blank, but what does now

seeing a blank mean? It means that the input is entirely scanned in this pass and also see what

has happened is this 1 was cross and you found a 1 corresponding to this, this 1 was crossed and

found the 1 corresponding to this, this 1 was crossed and you did not find a 1 corresponding to

this particular 1 which was here. So that means this original length of the string is odd and

therefore it should print B to the first blank cell available.

So therefore it keeps on now moving to the left, right? And in this as it moves to the left you

know it just keeps on moving to the left, keeps on moving to the left when it reaches a blank

symbol here it will convert it to B, why B? Because it knew that the string of 1’s that it has

considered in this pass is odd and the remainder by division with 2 is 1 and therefore our code of

1 being B it should print that B and so it is here.

So therefore having written this blank this blank by B so the situation will be like this what

should it do? Now it should again start this process all over again on the remaining one, which

are the remaining ones? The 1’s which is the quotient of division by 2 and that is indeed see 5

when you divide by 2 the quotient is 2 and that is what you have here there are two 1’s, right? So

it will come here and then having written B it should go over this side so therefore it is a right

moving state and in this as it moves to the right it ignores this cross it sees a 1 and this 1 it is

converted to x and this process begins again, okay. So now let us go over again, so this 1 is now

changed to x having changed to x the machine is in this state this sees an x whatever self-loops

we are not writing that means it remains there without changing the symbol.

So this x it skips this 1 takes the machine to the top state without converting that 1 into anything

that 1 remains as 1 this 1 is here and this comes here in this right moving state and now it will

again keep moving to the right sees an x which of course it ignores, now it sees a blank the head

will be here in this state and blank means again that the current 1’s we have already taken care of

and in this case you see what had happened was this iteration what had happened this 1 we

converted to x this 1 we could match it off to this and which remained 1 and now it is here seeing

a blank which means that the number of 1’s in this part left was even so it now should print a A

and therefore it is similar to this except in this part what it remembers is that it should print an A

whenever it sees a blank.

So in corresponding to this there is a left moving state and so this is actually as it is from here is

moving to the right and when it keeps on moving to the left till it finds a blank which it changes

to A, okay so let us go over at again what is going to happen this it will keep on after seeing this

blank it would have come to this state and it will start moving to the left and skip all 1’s all x’s

this B and when it sees this blank it will change it to A and then moves to the right, in this right

what it should do? It will keep on going to the right till it sees this 1.

So these things do not change this 1 is converted to x, x blank now it sees so it is here, right? And

what it finds that it has reached a blank. So now on blank in these cases it would go the left but

now remembering the string of 1's that it had considered in this iteration was odd and therefore a

B needs to be printed. So it will now again go over to the left and here this blank would be

converted in the next step to B and as the machine converts the blank to B, so where is his

machine now?

This machine was here it converted this blank to B and it is now in the right moving state and it

will now it is not going to see anymore 1’s because all the 1’s have been crossed off so it will

keep on moving to the right and what will happen it is going to see a blank the moment it sees a

blank in this state, what does it mean? That means you know that there was nothing more to do

because all the 1’s now have been converted to x’s and that is why you are not seeing any 1 in

the current space on which you need to work and since you found that all 1’s have been taken

care of therefore the job of conversion is over, okay.

So let us see this once more and remember here we are talking of a Turing machine where we

have used our old convention that any transition which is not shown means the machine remains

in that particular state without changing the symbol I wrote here blank but more technically or to

be consistent with what we are writing I should have said blank is replaced by blank.

So let us go over once more very quickly this transition diagram so remember that the machine

would start at the left most 1 of a block of 1’s which are flanked on both sides by blanks the

machine would start here and this state why this is the state how do we know from this transition

diagram that this is the initial state because there an arrow coming from nowhere into this state

which indicates this is the state in which we start the operation.

So in this state if you see 1 you convert it to x go to this right moving state that means the

machine moves to the right and when it sees another 1 it does not bother to change it because this

is the 1 which corresponding to the 1 which you had cross off. So 1 converts gets converted to x

next 1 is not converted to anything it remains 1 but it means that we have corresponding to this 1

we have found a 1 so we are back in this particular state.

(Refer Slide Time: 14:01)

So this alternately so this we know that given a block of 1’s what we are doing is we are putting

it crossing it to x so first 1 next 1 we are leaving it as such crossing it to 1 next 1 as such crossing

it to 1 leaving it as such but now when we see a blank that means that input space is over and

depending on whether the machine is here or here it knows whether the input space had once

which is whose length is either odd or even in this case it is even in this case is odd. So this is

what is going on and here those transitions which we have not shown.

(Refer Slide Time: 14:50)

So for example in this if there was an x in this state if you see an x, what does it mean? It means

the machine remains here and moves to the right that is the convention we have made use of.

Notice that in this machine we have made a transformation of unary to binary and something

again you do not know how it is it could have been done at all by finite state machine. So this is

something extra that we can see that Turing machines can do which we could not do by finite

state or by PDA, alright.

We have seen now several at least two examples of Turing machines both doing fairly interesting

tasks the first example was checking whether a string of a’s, b’s and c’s are equal number of a's,

b’s and c's and the second one was converting unary representation number into its binary

representation but in this particular course of theory of computation our focus is not so much you

know computing functions but our focus has been to recognize languages how do we recognize

languages or what is really what does it mean to say Turing machine recognizes a particular

language.

(Refer Slide Time: 16:52)

As we has seen several examples of Turing machines now we know what are the components or

what go define a Turing machine like if you look at this Turing machine first of all it has a finite

number of states we can say a Turing machine consist of Q of finite set of states, then it uses tape

alphabet so that is all the this is the set of all symbols which can appear on a particular Turing

machine tape. Now a subset of this sigma which is a subset of this gamma is the input alphabet.

Then one particular symbol we made a special and that was the blank symbol you can say blank

which is an element of tape symbol but which was not in the input is the blank symbol and the

importance of the blank symbol is that this is the symbol which most of the cells in a Turing

machine tape will have then of course we had a transition function and this transition function in

this example was graphically or pictorially represented, but what is a transition function for

deterministic Turing machine? It takes a state and a some symbol which appears on the tape so

this is the present state and the symbol that is being scanned and corresponding to which there

will be a next state and the symbol that will overwrite and the move.

So therefore transition function is a mapping which is from the set of states crossed with the set

of tape symbols and its range is that means given a present state and the present symbol being

scanned this transition function should tell what is the next state and therefore this component it

is Q what is the symbol being written therefore this we write and what is the move, so one of left

or right.

Then you have of course a special state which is the start state, so q0 which is an element of Q is

the start state of the Turing machine and in the context of language recognition we should have

some final accepting states, so some F which is a subset of Q you know final accepting state and

in these states once the machine if the machine at all reaches one of these states then the machine

halts that is the convention we have so final accepting states are all halting.

So if you specify all these then you specify a particular Turing machine different Turing

machines of course can have different Q, gamma, sigma, blank symbol maybe different,

transition functions will be different, etcetera. However notice that this is finite, this is also finite,

this is also being a subset of gamma this is finite this is one particular symbol this is a map from

Q cross gamma both are finite, so therefore and it is a deterministic machine we have said so

corresponding to each one there will be one such component one Q, one symbol will tell me

what is the next state symbol being written the direction of the move.

So point is even this is a finite function everything here is finite. So therefore the description of a

Turing machine whether you use a diagram or whether you use these symbols and then elaborate

each one separately whatever it is a Turing machine can be described finitely and that is a very

important point, a Turing machine has a finite description. Now you must realize that this is what

is expected, why? Because what we are trying is our overall motivation is to capture the intuitive

notion of an algorithm by Turing machines no there can of course be many many infinitely many

algorithms there can be infinitely many Turing machines that is fine but an algorithm is a finite

object, is it?

Supposing I code an algorithm in my favorite language programming language whether it is C or

java in that is a text and that text is something finite. So my every program is a finite you know I

can think of a program as a finite text so it is something like a finite you know entity or an

object. So if I am saying that our algorithms can be captured by Turing machines then to retain

that correspondence since algorithms are finite things or entities Turing machines also must be

finite entities and indeed these are as you can see a particular Turing machine is represented in

terms of these things and these are all finite things and therefore this particular Turing machine is

also a finite entity.

(Refer Slide Time: 24:33)

Now let us consider what we mean by recognition language recognition by deterministic Turing

machine and the notion we shall use here is the configuration of Turing machines we have

spoken of configuration at least several times before when we talked off PDA for example we

had a notion of configuration and configuration is kind of snapshot which tells me at what point

the computing device is and this snapshot should have enough information that from that point

onwards if I would like to carry out the computation by the computing device the configuration

should have all the information to tell me to how to carry out that further those further steps of

the computation.

Configuration of a Turing machine at least one tape Turing machine the kinds of Turing

machines that we are talking of should have then what? It must tell me what are the symbols

which are there now on the input and there order in which they are there that is the configuration

must have that tape contents and it should also tell me the state of the machine and it should tell

me where the head of the Turing machine is positioned currently.

So again remember that configuration should give me a snapshot which has complete

information about the current affairs of that running of a particular Turing machine. So at any

given time a Turing machine tape has some symbols and the read write head is positioned to be

reading a symbol on the tape and the machine is in some state q. The configuration of the Turing

machine must consist of all these information, however tape is an infinite thing, is it? We said it

extends to infinity in both directions.

Then how do I represent this infinite thing finitely, fortunately remember that if begin with we

had only finitely many symbols on the tape initially and after a number of steps non blank cells

will still be finite will be bounded because why because you see it is like this that suppose

initially this much was the space of the tape which had which contained all the non-blank

symbols you can imagine the input.

And then the machine after n steps may have moved to all these area in n steps it would have at

best converted n more blank cells into non-blank to contain non-blank symbols. So after n steps

the number of cells which would contain all the non-blank symbols will be the original ones plus

n at most that is the bound. So in providing tape contents we do not have to of course say give all

the blank cells all we do is so let us take this picture and let us say I had here a, blank, a, b, a, d,

blank or let us say a and all these cells are blank.

So I would represent this situation by saying a blank a b a d a and that is all I write with the

understanding all the symbols to the left of this and all the symbols to the right of this all these

symbols are blank, right? So now the machine is in machine is scanning this particular b in state

q in this picture, right? A convenient way of writing all this in one single line is to do this we will

write a blank a and here we write this the state and then b a d.

So this is the way we will represent configuration so couple of things again to say here that this

is a string which will contain symbols from the tape alphabet including blank like here we have

one blank but the idea is the current tape contents is this and everything to the right are blanks

everything to the left are blanks and now you see there is a state symbol appearing the idea is

that this the machine is in this particular state scanning the symbol immediately to the right, so it

is scanning this b, alright?

And if you notice that this very conveniently represents whatever information that particular

picture had, alright?

(Refer Slide Time: 31:45)

So now what we can say that initially you know we always say that initially the Turing machine

is scanning the left symbol of the input that is a kind of convention we all have all the time. So

what is the initial configuration? Initial configuration will be the input let us say x some string

and the machine is going to be scanning the left most symbol of this input and that situation is

very conveniently represented by this configuration and notice our so we are saying that the

machine is in state q0 scanning the left most symbol of x which is our input.

Now let us elaborate it a little bit so let us say x is a, b and y and suppose our Turing machine is

such that in q0 if the input is symbol or not the input symbol the symbol which is being scanned

is a then it goes to the state p writing b and moves to the right. So therefore what would happen

initially in picture we may write like this these are all blanks here a then b and then this whole

thing is y and then these are all blanks initially the machine is here in state q0, and this in one

step what will be the situation? Of course these will be blanks and this a is converted to b so and

of course nothing else changes.

So this a has become b there was a b here so that b is here and then the string y and then of

course blank and so on and the head will be since the move is to the right the head will be here.

So in terms of configuration what is the situation? Initially my configuration was q0, a, b, y and

in one step the configuration became b p b p b y, right? So from this configuration we are getting

this particular configuration, why? Because the Turing machine had carried out one step of its

activity.

(Refer Slide Time: 34:48)

So what we can see that if we consider that (())(34:49) there is a space of configurations of a

Turing machine there is a relation amongst configuration and what is that relation? Supposing

there is configuration C 1 and the configuration C 2 we say C 1 derived C 2 in one step or C 1 is

related by this relation if the Turing machine in one step can go from C 1 to C 2 so let us see let

us this way put it we define C 1 you know then this relation symbol to C 2 if in a single step the

Turing machine can go from configuration C 1 to C 2.

So therefore this is a binary relation relating configurations and of course you can define another

relation which we can say so if you remember we are saying that this relations stands for

machine so machine one step situation in a single step from configuration C 1 the machine goes

to configuration C 2 this we will say in 0 or more steps one way of relating this to is that you

know this particular relation this is again a relation on configurations and this particular relation

is the reflexive and transitive closure of this relation even without going into those kinds of

mathematical jargon intuitively the idea is very simple we will write C 1 goes to C 2 we will

express like this for a Turing machine M in case the configuration C 1 from starting from

configuration C 1 in 0 or more steps you can go to the configuration C 2, alright? Why are we

doing all this? You are doing all this because very precisely we would like to capture the notion

of accepting or recognizing a language by a Turing.

We are trying to understand very formally and very rigorously what does it mean to say a Turing

machine recognizes a language and towards that we defined a relation on configurations and this

relation we will relate to configurations provided from the first you can go to the second

configuration in 0 or more steps using that Turing machine which you have in hand.

(Refer Slide Time: 38:38)

So to begin with a Turing machine M remember it has a number of states it tape uses an alphabet

which we are calling gamma let us say the input again is over an alphabet sigma, then it has a

transition function delta and it has an initial state q0 is a special symbol which is blank symbol

let us write it as this and then let us mention the states which are final accepting states so these

are this is final accepting states.

So once more this is the set of states of the Turing machine this is the input alphabet or rather

tape alphabet is the input alphabet is the transition function, the initial state, the special blank

symbol and the final accepting state. And L M is the language accepted by Turing machine M

this Turing machine so this stands for language accepted by M and using our terminology now

we can very precisely say that this L M is this set of all strings x over alphabet input alphabet

sigma such that q0 x which is a configuration which really stands for configuration in which the

every part of the tape is blank except where the input x is written the machine is in its initial state

q0 scanning the left most symbol of the input and from this configuration if in 0 or more steps

you can reach a configuration where you know some alpha is here and maybe some p and beta

where p is an element of F, okay.

So what we are saying is scanning the left most symbol of the input initially in the state q0 if in 0

or more steps the machine if it reaches a final accepting state in that case the original x is in the

language accepted by the Turing machine, right? Now right away let me use another terminology

the set of all languages for which we have a Turing machine recognizer Turing machine which

can accept a language such a language is called recursively enumerable language.

(Refer Slide Time: 42:21)

So let me since this is an important concept let me note it down, so this is a definition a language

L is said to be recursively enumerable if there is a Turing machine M such that this language L is

the language accepted by the Turing machine M, right? So recursively enumerable languages are

those languages which are accepted or you know we also use the term recognize accepted by

Turing machine and this is the class of languages which will consider you know extensively in

next classes but we already know from the first example that the language of equal number of a’s

is followed by equal number of b’s and equal number of c’s that means this language is a

recursively enumerable language because we gave the Turing machine which recognize precisely

this language.

So therefore this particular language which we know is not context free is a recursively

enumerable language. So our goal will be to study this class of recursively enumerable languages

and see which all languages at least intuitively which all languages are recursively enumerable

and if there are languages which are not even recursively enumerable that will be our concern.

Before we end let me say that we do not always write this whole thing recursively enumerable

language we just simple write r e so this is an abbreviation for recursively enumerable.

