
Course on Theory of Computation
By Professor Somenath Biswas

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Lecture 33
Module 1

Equivalence of acceptance by empty stack and acceptance by final state.

Last time we had explained that we have two notions of acceptance for PDAs.

(Refer Slide Time: 0:28)

So suppose I have a PDA and which is as a set of states as this is sigma is the set of input

symbols and gamma is the stack alphabet, delta is the transition function, q0 is the initial state

and z0 is the initial stack symbol and the F is the set of final states and for this for such a

machine we had explained what was the language accepted by final states, right? That means any

string which this will consist of all those strings which will which can take the machine from the

initial state to one of the final states, right?

So we said ending in a, yeah right, so in one of the final states so in terms of the instantaneous

description it was that q0 w is going to be in the language provided if the initial ID is always q0

that w and z0 and the this after sometime you reach a p, epsilon and we do not care whatever is

the in the stack, right? So we said that language accepted by M by final state is the set of all

strings w such that this condition holds. Now as oppose to that we also defined last time that

there is another language associated with such a machine and we said we use the notation N(M)

and this is the set of strings which are these are the language accepted by empty stack.

Now let us see how we can define it is again the all strings w in sigma star such that hear also of

course I should have written sigma star all strings w in sigma star such that from the initial ID

which is again q0, w, z0 after sometime we reach a state p and. So this p can be any state any p in

q, okay as oppose to of course in this case the p was one of the final states for some p in the final

states set of final states. So contrast these two languages which are associated with a PDA M in

the first case it is all those strings in sigma star which can take the machine from the initial ID to

an ID where the entire input is consumed.

So what is left is epsilon and the state is one of the final states and we do not care what is the

stack contents that time. As oppose to in this case this is the language accepted by empty stack

here we are saying this language consist of all those strings in the alphabet sigma over the

alphabet sigma such that from the initial ID with that string w in the input the machine can go to

this particular instantaneous description, and what is that description? That we do not care what

the this state p is but the stack should be empty as well as the input should be completely

exhausted, right?

So these are the two notions of acceptance by a PDA and so you notice that the for the same

PDA M actually we have two languages which are associated with M so I can talk of the

language accepted by M by final state and here it is the language accepted by empty stack. Now

as it happens one may think this is more natural because you know we are used to acceptance by

final state as we had seen in the case of finite state machines but often it is easier to describe a

language acceptance by this notion.

(Refer Slide Time: 6:03)

For example consider this language you know simple language we know it is not a regular

language and just consider this particular machine PDA which has exactly one state and the so

there is only one arrow it has to go from the state to this and what it can do is if it sees a 0 and on

the when it sees the stack symbol is z0 it will push let us say A, right? Now if it sees a 0 and an A

here it pushes on the top of the stack is A so we just push as another A so instead of A you have

the string AA A the top of the stack symbol A is replaced by AA and now if it is 1 and if it is A

then this is this top of the stack symbol is simply popped and it can also go basically do this,

right?

So it is not difficult what is happening you see that for example if you had the string 000 111 so

initially I should have said the initial stack symbol is z0 so let me describe this particular

machine M in this manner that it has only one state q and input alphabet is of course 0, 1 and the

stack alphabet is A and z0 and this is delta and delta is what I have described here in terms of this

diagram and the initial state is q because that is the only state we have and initial stack symbol is

z0 and we do not care suppose I just say the we have an empty set of final states which is okay

because I am going to associate a language by empty stack acceptance.

So this is the language I am interested in so far as this machine is concerned, so since the

acceptance is empty stack we are not concern with any final state and so therefore I do not

describe any state to be I do not mark any state to be a final state. And now on this input what

will happen initially the machine has z0 and then you see the machine is going to see this symbol

top of the stack symbol is z0 so it just pushes an A here and after consuming this particular

symbol then it sees another 0 and now we can make use of in fact the only transition that we can

make use of is this.

So this particular 0 on this 0 it pushes another A this 0 is consumed and similarly one more time

we have the same situation so this that particular 0 was consumed and then A was pushed and

now what you have is a string of three 1’s and for every 1 you see and if the top of the stack is A

that particular symbol top of the stack symbol is popped this is what it means, right? That if I

have the input symbol 1 top of the stack symbol is A then that particular symbol is replaced by

epsilon. So after consuming this 1 the situation will be this because this particular A will be

consumed I mean popped and similarly for on this one also will be popped and this one also will

be pooped.

So what we have is the whatever was the input that is totally exhausted and now I can make use

of this particular transition to even remove this z0. So what has happened notice this machine

starting with the initial state and in this case there was only one state q on the input 000 111 with

the top of the stack symbol z0 as the only contents of the stack we manage to come to the ID in

which the stack is empty as well as the entire input string has been consumed. And therefore that

particular string 000 111 would be in the language N(M) which is associated with this particular

machine and it is not difficult to see that this particular machine will accept all strings which are

in this language, right?

In fact actually the string epsilon is also there in the language and you can see if only epsilon is

there the initial ID will be p, sorry q epsilon and z0 then you can just use this particular transition

and we can remove that z0 and go to a the ID so that would mean the epsilon would be accepted,

right? So now I have two notions of acceptance and correspondingly I have two languages with

associated possibly with the same machine M, right? So what is the by the way I mean it is a

trivial kind of question what is the language accepted by M by final state that language is empty

there is no string will be accepted because there is no final state p and so therefore no string in

this set.

So in any case the point is that for every machine M we can talk of two languages which are

associated with that particular PDA, now the question therefore is that is it possible that I have a

language for which I can define a PDA which will accept that language using one of these

notions and not the other, then we have a some bit of problem because then I cannot talk of both

these notions of acceptance is in the same manner and the same breadth so to say as it happens

that is not the case, the point is that if for a language there is a PDA which accepts that language

while empty state, I am sorry empty stack then there will be another PDA which will accept the

same language by final state and vice versa.

So the point is if a language is at all accepted by PDA using either of these two notions of

acceptance then that language is also accepted by some other PDA possibly using the other

notion of acceptance we will prove this now.

(Refer Slide Time: 15:12)

What I would like to show you now that suppose I have a PDA which accepts some language by

empty stack we would like to construct another PDA from that old PDA which will accept that

same language the new PDA will accept that same language using final state acceptance.

So let us see what is the situation, suppose I have this is my PDA M and which is accepting some

language with a empty stack acceptance so you know schematically it is something like this that

this is the initial state of that PDA so let me say M is q, sigma, gamma, delta, q0 so this state is

q0 and z0 and since it is accepting by empty stack you know we can just say that the set of final

states for this machine is empty. Now what I will like to do is essentially that create a machine

which when it senses that this particular machine has empty (())(16:45) stack it goes to a final

state it can go to it is final state.

Now you might say that why not have the situation that from such a state it should go to a state

which is final state the problem is you see you have to we must appreciate that when this

machine has emptied its stack then there can be no other transition, why? Because every

transition requires something in the stack some symbol some stack symbol as the top of the stack

symbol so the if the stack is empty the machine cannot proceed any further because the way we

have defined our PDAs you note is that for every transition we require that some symbol should

be there as the top of the stack symbol.

So the point I am trying to say is that once this particular machine has emptied its stack this

particular machine cannot do anything, now if are just running this machine and once that has

emptied its stack then of course you it nothing can be done, right? So one possibility is how do I

to figure out that situation as happened that we create another machine M1, right? Where we

have a different initial stack symbol and so another state new state p and from that state p, right?

On without consuming any symbol that on so in that machine the initial stack symbol is x0, so x0

is replaced not replaced by when the x0 is there we can push this z0 which is the top of the stack

symbol of M, right? So is it clear what we are saying? We are saying that imagine this old

machine which is M to that I add another new state and the really the role only role this state

plays is to push this stack symbol start stack symbol start of z0 onto its own initial stack symbol

x0, right?

And now and then it goes from this state p to the state initial state of this machine M then this

machine let us say starts working and let us say at some points of point of time this machine has

emptied it stack then what will happen he will this composite machine is going to find the top of

the stack symbol to be x0, right? Is it? Because this machine which kind of takes over once this

state is reached if it ever empties its stack that time this machine’s empty stack means that the old

top of the stack I mean initial stack symbol is exposed now which is x0.

So in such a situation what we want is from every state if we sense that if we find that now from

this state if you find the top of the stack symbol is x0 then you may write this x0, I will do not

write it here, and go to a state let me call it pf for final state, right? So similarly from here also

this transition is possible on no without consuming any symbol if you can go from this state to

this particular state writing as the same thing and basically the same situation.

So what we are saying is that from every state in this machine this extra transition is there to a

new another new state, so you see we are adding two states one is the new initial state and a final

state and now I claim that this particular machine if this which was inside this circle or this

ellipse was the old machine M, let me write it and this entire machine is M1, right? So now is it

clear what is M1? That M1 is essentially the this set of states union to other states that we are

putting p and pf, right?

Of course it will have the same set of input alphabet same input alphabet and what is its gamma

it is the old gamma union we have a new bottom of the a new start symbol the symbol stack

symbol with which you start which is the start stack symbol x0 so which we this is the new stack

alphabet so basically new stack alphabet is obtained by just adding a adding this x0 to the old set

of stack symbols delta dash delta dash is a new transition function which retains all the old

transition and adds a few more so one is to go from this state p to the old initial state of machine

M or rather this machine’s initial state and the other set of transitions will can will be for taking

the machine this composite machine from any state to this final state on top of the stack symbol

if found to be x0, right?

That means the this old machine M would have emptied its stack and so therefore we go to a

final state the only final state that we have so this is delta dash and now for this composite

machine the initial stack symbol is x0 and it has a final state which is this state, I am sorry I am

writing this as these are tuples so these are not set, right? So we should have written like this,

okay so it is not too difficult to prove that the language accepted by M1 on final state is the

language accepted by M on empty stack so that is why it is possible from any PDA given any

PDA which accepts a language by empty stack then using this construction to obtain a new PDA

M1 which will accept the same language by final state. And as an example we could have done

this construction for this particular PDA which was accepting this language 0 n 1 n by empty

stack.

So it should have meant since there is only one state so this is the old initial state there is only

one state here and this is our new p, right? And from here we can go to a pf which is a final state

so let me write like this then here also I should have put a circle to say that this is the final state

and here what should we what is the transition without consuming any symbol on its initial stack

symbol which is now x0 we push z0, right? So now we start the this machine and time the stack

is empty that would mean that we are going to see x0 and we come here.

So you see that from the old machine just by adding these transitions we get a machine new

machine M1 and it is not difficult to see that L(M1) is also 0 n and n greater than 0.

(Refer Slide Time: 27:39)

Let us now prove the converse of what we proved just now, so what we want to show that

suppose I have a PDA, okay this is accepting language by final state, right? By reaching a final

state and from this PDA what I would like to do is to construct another PDA which will accept

the same language by empty stack.

So it is kind of tempting to say the look why not have transitions from every final state so in this

case you know I have marked two of these states as final to a particular state, right? Where the

job of this particular state once you go there once the machine chooses to go here the this in this

state what we are going to do this machine is going to do is just empty the stack, so how will you

do that? Basically that here is on epsilon, right? On any x to epsilon.

So what it means is that whatever x is any stack symbol, right? And when we go here when we

have reached some final state and the machine has the capability of making this transition and for

making this transition of course it does not have to does not need to or does not wish to consume

any input symbol presumably by then if it has accepted the string it has reached this final state

there is no input symbol to be consumed, right? And so whatever be the stack symbol here writes

the same stack symbol or it can even just remove that pop that stack symbol and similarly from

here also it can do the same thing.

So you might say that this should work, right? Why? Because let us let this within this ellipse

whatever be the you know states and transition which where there that shows the old machine

and suppose now the old machine has gone to a final state so that means it has reached to one of

these final states and now it should indicate that string to be accepted by empty stack. So all we

are doing is that we are going to a state and emptying the stack, right?

This would work almost, why? Why is this is not the correct conversion for a machine which

accepts a language by final state to empty stack because seems this is alright, reason it is not

correct is that the old machine you know this situation is possible that you see that this machine

suppose the old machine was M which again we will write Q, sigma, gamma, delta, q0, z0, F.

Now it is possible that this machine empties its stack consumes the entire input, okay so suppose

in this case what I am trying to say that suppose from the initial ID q0, w, z0 it goes to some state

p epsilon and p is not a final state, okay.

So such a w will not be accepted by the old machine such a w is not so I can say that w is not in

language L(M). Now you look at this composite machine which you are trying to what we said

our first attempt to convert M to a machine accepting the same language on empty stack. Do you

see in this machine what is going to happen? That w has taken the machine from here to some

state p which is not a final state but the stack is empty the input is empty.

So then that means the machine has reached this state reached this ID and so if we are having the

notion of acceptance by empty stack then this w would be accepted, this situation we want to

avoid, right? It should not happen this particular string w should not be accepted then how would

you take care of such situations? The only way I mean one way of doing I would be that you add

another initial state to this and again the role of this initial state is to put a new see this new

machine will use x0 as its initial stack symbol and from x0 it just puts z0 on top of the stack x0.

So now we will see what is going to happen, so what is going to happen is if this situation

happened in this machine of course this machine will also reach this state p the input will be

exhausted but the stack would not be empty because all the stack will now show this old top of

the stack symbol x0 here, is it? So is it clear what we are saying that this particular machine had

z0 as its initial stack symbol we are creating a new machine where we will use a new symbol

stack symbol x0 as the you know initial stack symbol and the only thing that you do really is to

write in the beginning on top of this x0 you put the initial stack symbol of this machine and then

let the old machine run, so basically you are going to the initial state of the old machine which

accepted the language by empty stack.

And now if the old machine, sorry the old machine was accepting the language by final state and

now if the old machine had emptied the stack exhausted all the input and in a is in a state which

is not a final state. So what is going to happen? Right now the this particular machine the

composite machine is going to see x0 on the top of the stack, right? So the stack is not empty and

therefore there is no way this machine this composite machine is going to remove that x0, so

therefore that w is not going to be accepted.

So this is the correct conversion from a machine which is just this which was accepting some

language by final state to a machine which accepts the same language by empty stack, what did

we do? We added an extra state here as the initial state as well as we added another new state

whose job was to basically you know flush the stack and that state you would reach you can

reach only from one of the final states and the accidental emptying of stack is not going to now

matter because we have this x0 in the stack, so this is the conversion. So we added two states

added a new stack symbol and we can now you now it is easy to get the definition of the empty

stack acceptance machine from the old machine.

(Refer Slide Time: 37:27)

We had encountered this language before we gave this as an example of a context free language

which is not a regular language.

And let us design PDA to accept this language this strategy is something very simple so let us

say for 0 there is a corresponding stack symbol so this is the input symbol and the corresponding

stack symbol is A and for 1 the corresponding stack symbol is B and think of some examples

string in the language let us say 01101100 or something like this, so this is four 0’s and four 1’s

which is therefore a string which is in the language what you are going to do is something like

this that here is my stack there is some initial stack symbol z0 when I see a 0 I will push an A and

now I see a 1 so you see what I can do is therefore that this particular 0 is can be checked off

with the one that I have seen.

So on one and if the top of the stack is A, then I am going to consume that 1 and you know we

are going to pop the A. So basically that means I have what I has a symbol 0 here I have seen a 1

so these two have been paired off and now the rest of the string should have the same property

that it should have equal number of 0’s and 1’s. And now again I see a 1 so corresponding to 1

this 1 will push a B, right?

And again I see a 0 now 0 and top of the stack is B so I can consume this 0 and corresponding

this to this 0 was the old 1 for which I had a B and therefore I pop it and now you see I have 1

here so I will put a B another 1 here so I will put another B, is it clear why we are doing it

because you now I as yet I have no evidence that there is a 0 too so far so long I have you know

come to this point I have no evidence that these two 1’s can be paired off with 0’s and so these

two B’s are recording the fact that I have seen two 1's which have not been paired off with 0’s

and now I see a 0 this 0 for this 0 this B will be removed this 0 new or last 0 this B will be

removed and then we can remove this z0 and the stack will get empty.

So what I have described is that I have one just one state, right? And if because I have only one

state that is the initial state as well as all the transitions are going back from that state to itself

and let us now write down the whatever I described. So if you see a 0 and that means so far the

stack is empty so what you are going to do you are just write the corresponding stack symbol and

push it there, right? So A z0 similarly 1, z0 will be B z0 now if you see 0 and B what should you

do you should consume this 0 and pop off this B, so epsilon 1 A epsilon and what about 0 and A,

it would mean that we should put push another A and 1 and B I should push another B and finally

that I should have the freedom to remove this z0.

So epsilon z0 epsilon, right? So what has happened is that I have a PDA call it M and I clam that

this PDA accepts this language L by empty stack, okay. So it is not difficult to say that any string

which has equal number of 0’s and 1's will be accepted by empty stack by this machine, correct?

And on the other hand suppose I had string like this 10010 so what is going to happen that

initially of course you had z0 and when this 1 came you pushed a B, right? Then this 0 came you

know you popped this B and checked off this you know consumed this 0 this 0 came you put A

this 1 came so now you know 1, A.

So this A will be popped off and now a 0 is there so corresponding to that is A is there you see

and now the input is exhausted and we cannot you know empty this stack because on the top I

have A and such an A can be removed you see only with a 1 and that 1 is missing. So you can see

that any string which is not in the language whatever I wrote there that string will not be

accepted. So it is not difficult to prove that the this machine will accept this language which has

equal number of 0’ and 1’s.

The interesting point about this particular machine is that it is accepting a kind of non-trivial

language using just one state, right? And of course it is doing so this acceptance is by empty

stack. So two points I want to make here that firstly you see that it is kind of easy to define

PDA’s to design PDA’s using the notion of acceptance by empty stack to accept some given

language we will believe this as an when we do more and more problems when we will not in

these lectures many more but if you try more and more problem you will find this kind of

acceptance is fairly easy to use.

And the other interesting this is this language seem kind of complex, right? Because it is not a

regular language and yet we could accept that language by empty stack using only state, this is

not accidental what we can show in fact we are going to prove that any context free language can

be accepted by a PDA with just one state using empty stack, but we will prove that in the next

lecture and in the next lecture we will prove the converse of this not so much one state business

the converse would be the given any PDA I can get a context free grammar such that the two

devices that is the language accepted generated by the grammar will be the language accepted by

the PDA that we are going to design.

So in other words the two results that we are going to show that give a PDA we can find a

context free grammar to generate the same language as accepted by that PDA and given a context

free grammar we can find the PDA which will accept that language which is generated by the

context free grammar.

So that will show that PDA’s capture exactly the set of languages generated by context free so

therefore PDA’s are just another way of capturing the class of context free languages this is

something what we are going to do in the next class.

