
Theory of Computation. 
Professor somenath Biswas. 

Department of Computer Science & Engineering. 
Indian Institute of Technology, Kanpur. 

Lecture-15. 
Decision Problems for Regular Languages. 

 

(Refer Slide Time: 0:19) 

 

Let  us  discuss  some  decision  problems  concerning  regular  language.  What  are  decision

problems? Decision problems are those computational problems whose output is yes or no.

So you know many decision problems, for example given a graph, if the draft corrected. So in

decision problems there will be some input and output will be either yes or no. That is, in that

sense it is a decision problem, we need to decide something. And in these problems today

which we will  look at,  the decision problems, there is the input is  going to be a regular

language. 

And we may ask, for example given a regular language does it satisfy certain properties, then

the answer is yes or no, that these are the kind of questions that we will discuss. In fact the

most important decision problem concerning regular languages is that, you are given 2 things

a regular language L and a string W and you are supposed to decide this question, is the string

W in the language, the answer is either yes or more. So this is called language membership

problem. We are asking whether the string W is a member of the language here. And that is

what we need to decide. 



(Refer Slide Time: 4:32) 

 

Now our algorithm of course will depend on how we represent the regular language. And

now you know regular languages can be represented, can be given in several ways, either in

terms of a DFA, NFA or an NFA with Epsilon transitions or through a regular expressions. So

therefore we will  have different  algorithms depending on the way we would present  the

regular language. So the 1st case is the simplest case, let us take the simplest case that L is

represented by a DFA say M. In other words what we are saying is that this language L is the

language accepted by the DFA M. And now the problem boils down to your input is M and W

and you would like to know is W accepted by the DFA M, let me take M is the DFA. 

This algorithm is rather straightforward, you can see what we can do, our algorithm can just

simulate the actions of DFA and what is that, it looks at the string W symbol by symbol



starting from the leftmost symbol and it keeps track of the state in which the DFA is after

scanning some prefix of the input W. And supposing at some point the DFA is in M at some

state Q and the symbol, next symbol in the input is small a, so at some point of time the state

is Q, the symbol is a and I know the next state is going to be whatever is the p according to

the transition function of a. 

So this part of the input is consumed, the symbol of the input is consumed, next state is P and

this way we carry out the simulation till the string is over and at that time if the state is

another final states of the machine M, then the string is accept it, we give the answer yes, it is

in the language, otherwise we say the string is not in the language and therefore the answer is

no. It is therefore quite straightforward the algorithm for membership decision problem when

the language is given as a DFA. What about if it is an NFA? 

(Refer Slide Time: 6:28) 

 



And here when I say NFA, I do not let say the NFA M does not have Epsilon transitions.

What you could do is 1st of all convert that NFA to an equivalent DFA and then use our own

algorithm. But the problem with this is we know that if this NFA has n states, the description

of the NFA, it is part of the input and this n is a parameter, is a size parameter, is one of the

parameters which determines the input size, then the DFA can have 2 to the power n states,

right. If, we never that it is possible for some nfas that the corresponding DFA, equivalent

DFA will have exponentially many states. 

So in that case the algorithm, just in converting the NFA to DFA is going to take exponential

amount of time and the algorithm is not going to be efficient. But there is a way out, you can

have actually a (())(7:54) algorithm but we do not come in that case we do not convert the

NFA to an equivalent DFA. Instead what we do is, strategy that we use that we keep track of

the set of states the NFA can be in after reading some portion of the input. So in other words

we keep track of the set of states M can be in, that means M is in some computational path of

the other M is in this state another computational path of the other, M within that state, we

collect all those, we keep track of the set of states as we scan the input string W symbol by

symbol. 

Now let us see what it means we understand because we have seen many nfas, the idea of

acceptance and all that, what are the states the machine can be in. So initially of course if the

machine is in its initial state, so this is the set of states the machine can be initially and

suppose W is of the form A1, A2… An, so W is in, W is a string with n symbols, so right now

the machine is in the state, the set of states it is in is Q0 and then when A comes, we know

which states it  can be in after A1, it is precisely the set of states given by the transition



function Delta Q0 a that will provide me with the set of states, these are the set of states the

machine can be, M can be here. Right. 

(Refer Slide Time: 11:26) 

 

Then A2 will come and suppose this set of states is, let me just given an example here P1, P2,

supposing these are the 2 states that result.  So I  see on A2 from P1 which all  states the

machine can be in, again that is just consulting the transition function and similarly from P2

on A2, which all states the machine can be, we take the union and that is the set of states the

machine can be after seeing A1 and A2 and this way you go up. Only thing is that this union

taking can be done fairly efficiently, what you can in this simple datacentre idea that we can

keep a bit vector, right to indicate which all states are there in that set. 

So now this one processing of 1 symbol therefore, how much time would it take? In general,

let us say this is A I, the set of states the machine can be is bounded by in size by the number

of states in M, the NFA M. So supposing that number is s, right and from, so the machine is

in set of states, that size can be at most s and we have to look at each state in that set and look

at on the next input symbol which all states the machine can be. So s into s, so we require

time s square, let me write time required is s square in processing 1 symbol of the input. 



(Refer Slide Time: 13:18) 

 

So and there are n symbols in the input W, so that our algorithm, what I just outlined is going

to be order ns square. Remember are n is part of the input, we know number of states, so this

is polynomial in the size of the input. So this is also a polynomial time algorithm. What if M

is NFA with Epsilon transitions? So here we will do exactly the same thing, per symbol we

have to keep track of which all states the machine can be but remember now after we get the

set of states the machine can be on scanning a particular symbol, then we need to take the

Epsilon closure of each such state and then take their unions. So strategy better for this, when

I have Epsilon transitions is right in the beginning to compute the Epsilon closure of each

state for NFA with Epsilon transitions. 



Step 1 compute Epsilon closure of each state and then you do exactly same thing, at any

given time after  processing a number of symbols in the input,  I  have a set  of states the

machine can be, then the next symbol will take care of, take the union of the whole idea that

we take the union of the set of states for where the machine can be for each one of these and

then Q, because of it is an NFA with Epsilon transitions, then I take the epsilon closure of that

set of states. And that is the set of states the machine can be after scanning the next symbol

and this way we will go on. 

Right, so what is the time involved? For step 1, we have again s states and to compute the

epsilon closure which is basically, recall which all state the machine, which are reachable

from that state, so that means we only look at the transition diagram where the arcs or the

edges are labelled with Epsilon, so it is really a reachability problem. So at most per state will

require the size of the transition diagram which is s square. So we need to do this for each

state, so s cube, this is the order. But this is step one which is done only once. Step 2, you

recall that we collect, at any given time we have a set of states, right and from each that that

set can be at most, can have at most s members, for each I need to consult the transition

diagram and then we take the union. 

(Refer Slide Time: 18:33) 

 

So you know, so that is again s square and then again it is same thing, that is the old thing,

this part is same, s square per symbol and then we need to take the epsilon closure of these

but then now I have already, done the epsilon closure of each state here, so it will be basically

boiling down to taking the union of certain states and that also can be done efficiently. So you

can see overall it will be order s cube + order ns square and so n is usually length of the input



is going to be larger than or put it this way, this, the amount of time you going to take is ns

square + s cube whatever is that, whichever is bigger it does not matter. 

(Refer Slide Time: 19:08) 

 

So this is roughly again, this is therefore a polynomial time algorithm. Alright. So there is yet

another  representation  for  regular  languages  and  that  is  regular  expression.  We  were

discussing the case when L is represented by regular expressions say R. And here what we

ought to do, the simplest straightforward method would be 1st obtain an equivalent NFA M,

by equivalent of course we mean that the language represented by the regular expression R is

the language accepted by the NFA M. But remember the standard conversion that we gave,

this NFA will be with Epsilon transitions. And in the 2nd step, decide if W, the input string, is

in language accepted by the NFA M, we know how to do it. 

And so it all depends on what is the size of the M in terms of the regular expression R. And if

we look at that construction once more, it becomes clear that the size of M is that most twice

the  size  of  the  regular  expression  R.  So therefore  this  construction,  of  course  we do in

polynomial time, we know how to do that and the machine M is not too large, it says at most

in the size of the regular expression, the number of states the machine M would have is twice

the number of symbols in the regular expression. 

And that is why we said in a way that, so let us say in fact this, more correct statement would

be the number of states of M is at most twice the size of R. So in other words this step on can

be  done  in  polynomial  time  and  step  2  of  course  can  be  done  in  the  polynomial  time,

polynomial in the size of W at the size of M but since the size of M is also polynomial with



respect to the size of R, this entire process also would be efficient. So what we have discussed

so far is that that the language, the membership problem. So we can we can, conclusion is the

language, the regular language membership decision can be done efficiently because we have

polynomial  time  algorithm in  every  case  for  every  representation  for  the  or  let  me  say

representation,  for  representations  in  terms  of  DFA,  NFA,  NFA + Epsilon  transitions  all

regular expressions. 

Thus this problem is at least for regular language is can be done efficiently, later on in this

course we will  see not  only we will  not  be able  to  do in  general,  for  certain classes of

automaton that this problem which now appeared so simple in case of regular languages, that

not only we may not have efficient algorithm, we may not have any algorithm at all,  for

example when we talk of Turing machine as an automaton which we will see later on. Our

next problem for decision, our next decision problem will be, we can ask this question for

example, given a regular language in terms of course some representation either a or NFA or

NFA with Epsilon or a regular expression about the size of the language. 

(Refer Slide Time: 24:54) 

 

For example we can see is the language empty, is the language infinite and so on, at least

these 2 questions we can ask. So let us consider this problem, given a regular language L, is L

empty? Now as we understand the language will  be given in  terms of  either  one of  the

automaton DFA, NFA or  NFA with Epsilon transitions or as a regular  expression.  So 1 st

consider the case when the regular language L is given in terms of one of the one automaton.

So L is represented by a finite automaton. Now what will be that finite automaton, whether it

is deterministic, nondeterministic with Epsilon transitions. 



When can you say such an automaton, think of this that I have this automaton and there is

some initial,  I  mean there is this  initial  state and the number of final states.  Clearly this

automaton accepts some strings if and only if there is some part from the initial state to one of

these any one of these, one or more of these final states. Right. So that is clear, right because,

you see remember that through the transition diagram, think of the transition diagram as a

graph by this is a particular vertex, let us say the start vertex and this transition diagram graph

is a directed graph but we can always use any of the graph search algorithm DFA (())(27:10)

search to find out all the vertices in the graph which of course correspond to states reachable

from this initial state, this particular vertex. 

Now it is very to see that M accepts or let me write it this way the language accepted by M is

empty if and only if no final state is reachable from the initial state. So basically this decision

whether a language is empty, if you give me that language in terms of finite automaton, the

problem is really doing a reachability analysis of a graph and that we know can be done quite

efficiently, right. Essentially it means at most I need to traverse each edge of the graph once

and  since  there  is,  if  there  are  n  states,  there  can  be  you  know  quadratic  many  edges.

Therefore, this problem can be done efficiently in polynomial time because we are solving a

reachability problem. 

(Refer Slide Time: 29:13) 

 



What about L is given as a regular language, regular expression? L is represented as a regular

expression say R. So the question we are asking here, the language denoted by R, does it

contain at least some string that is LR, is LR empty, this is the question we are asking. So we

can use our old strategy, given this regular expression, we can efficiently convert it to an

equivalent  NFA with  Epsilon  transitions  and then  we can  use  the  idea  that  we had just

mentioned to  see  whether  one  of  the  final  states  of  the  NFA, in  fact  NFA with  Epsilon

transitions. Our construction, in our construction there will be likely on final accepting state,

that is how construction went. 

We have to just see whether this final state is reachable from the initial state of the ultimate

NFA with Epsilon transitions that we defined for the regular exhibition. However it can be

done in another way, so let us say one method was convert R to equivalent NFA with Epsilon

transitions M, then decide if L M is empty. That is another matter where we do not convert

the regular expression R to an equal and NFA with Epsilon transitions and the reason for

discussing that is just it gives us another intuition about regular expressions, the algorithm is

not any more efficient because anyways this algorithm is efficient enough. 

And the 2nd method goes like this, see, we can recursively define or let me use it we can

inductively define the set of all regular expressions denoting empty language phi and by now

we know that this kind of interactive definition will be in terms of the inductive definition of

regular expressions. So that inductive definition is this, there are base cases, there are 3 base

cases Epsilon, Phi and symbol a, right. Epsilon base case, so let me write it as base case. If

your regular expression R is either Phi or Epsilon or a, then we know that this one denotes

empty language and other 2 are not empty. Right, this is by definition. 



And now we can see this that suppose our regular expression is R1 + R2, then it is quite clear

that R denotes an empty language, so let me say write this way that LR is, LR is empty if and

only if both LR 1 and L R2 are empty. So this is fairly easy to see. What is L of the language

denoted by R when R is R1 + R2, clearly in that case LR is union of 2 languages denoted and

if either of these is nonempty, then of course LR is not going to be empty. So LR is going to

be empty if and only if both of these are empty, so that is clear. 

(Refer Slide Time: 35:03) 

 

So  other  2  ways,  a  bigger  regular  expression  can  be  formed  out  of  smaller  regular

expressions, where the other way was concatenation, R is R1 R2 and the last one is R is some

R1 star. Now in this case so if R is R1 R2, so we are talking of concatenation, then again it is

fairly easy to see LR is empty if and only if any one of L R1 or L R2 is empty. Right. Because

if you concatenated the empty language with any language whatsoever, the result is going to

be empty language, that we know. So for this entire thing to be empty, if either of this is

empty, then of course the regular expression will denote the empty language. On the other

hand if none of them is empty, then clearly if L R1 and L R2, both are not empty, then clearly

when we concatenate, I will get some strings, so LR is not going to be empty. 

And finally in this case we know that LR is not empty because LR will have at least Epsilon.

Therefore you see all these 3 things together up to the base case, what we have NFA is a

recursive algorithm to decide whether a regular expression is empty or not. So the input is a

regular expression, then you see whether it is of the form, one of the forms or it is one of the

base cases and then accordingly whichever is the form that it is, if it is the regular expression



given is one of the base case regular expressions, then if it is given, if the regular expression

is this, then answer yes it is empty, these 2 cases, answer no. 

Then depending on whatever is your regular expression, otherwise if it is of the form R1 +

R2, then recursively decide LR, the emptiness of R1 and emptiness of R2 and we can answer

and similarly for the other. In this case of goes the moment you see the regular expression is

this form, you can immediately say the regular expression denotes the nonempty language

because you can get at least Epsilon. Now that we have seen efficient algorithm for deciding

whether a regular language is empty or not, we can use this to decide many other questions,

especially when the representation is in terms of DFA. 

(Refer Slide Time: 39:03) 

 

So let me give an example that given 2 dfas M1, M2 is language accepted by M1 same as the

language accepted by M2? See the base, one way we can do this is very simply that suppose,

it is clearly like this that you take the language, the machine M1, okay and so let me say this

is L1, the language is L1 for notational convenience. What will this language be? What I

think it is simpler to see in terms of, supposing this is L1, this is L2, what we are looking for,

L1 intersection with all those which are not in L2, so this is apart. And L1 complement L1

complement intersection L2, so all those things of the L2 which are not in L1, right. 

Now if see if both of these are empty, then that means what, then that means L1 is equal to

L2. So you see the point is that because L1 and L2 are given to me by DFA, I can very easily

construct a DFA, we have seen this. For this, do accept this regular language as well as the

DFA for this regular language and then a DFA for this entire language and then we can check



whether that regular language denotes or accept the empty language. So we can say that this

is the case if and only if L1 is equal to L2. So given 2 dfas M1 and M2, then I can construct

this language and then LM1 is equal to L M2 if and only if, basically we are saying there is

no string which is accepted by M1 and not accepted by M2 as well as there is no string which

is accepted by M2 and not accepted by M1. 

(Refer Slide Time: 42:58) 

 

Therefore in that case the 2 languages are equal, therefore the 2 machines accept precisely the

same set of strings. So similarly in a very similar manner you can, actually you can see I can

decide like this, right, this question, is LM1 subset of L M2, is LM1 a strict subset of L M2?

All these questions once given 2 dfas, there are very easy to decide because we can you know

in this kind of way we can look at the equivalent a DFA whose emptiness is going to decide

such a thing. 



(Refer Slide Time: 43:38) 

 

So now let me just take another example, there is another example to illustrate this point. So

here I  am given just  one DFA M, given a  DFA M is LM sigma star, that  is  it  contains

everything, every string in the language. Well, what will be, what we can do? That what we

can do is to, you know let M dash be the DFA, such that language accepted by M dash is

sigma star and we just ask the old question. Is LM equal to LM dash? This is very easy to

define a DFA with, which will accept all strings and then we are just checking whether these

2 dfas accept the precisely the same set of strings which is where we will use the previous

idea, algorithm and therefore you can even decide this. 

(Refer Slide Time: 45:18) 

 



There is another class of problems people are interested, which is, given a regular language

does it have, I mean is it infinite, does it have infinitely many strings. In other words what we

are asking is a language infinite? And if we can decide that then of course we can decide,

given a language L, whether it has finite, that is it has only finitely many strings. Now it can

be done at least a 2 ways and one way actually is from our idea of pumping lemma. When

this is, although algorithmically it is not going to be very efficient, but let me write this out.

Given a DFA M, LM, this language accepted by DFA is infinite if and only if there is a string

x in or x accepted by M such that the length of x is greater than or equal to n less than equal

to 2 n, where n is the number of states in M. So this remember M is a DFA and let say it has n

strings. 

And now let us look at it, at least this, that suppose you take a string, we know that that any

string whose length is greater than equal to M, the pumping lemma proof shows that and

which is accepted by n, such a string can be pumped infinite amount of times, right. And

therefore each time I pump I will get a new string, different from the previous strings. So

therefore just by pumping I can generate infinitely many strings from that one string. Right.

So what this string is telling me is that, remember pumping lemma says that for every string

accepted by the machine M, whose length is great greater than or equal to the number of

states, right. 

Now what this is saying is that left open, that yes I am looking for a string whose length is

greater than equal to n but is there are bound within which I am guaranteed to find it if it is

there? And in fact this is the problem, at most you need to work to 2n. Why? Because the

value that you pump, so let say we had a long string, bigger than 2n which is accepted by the

machine M. Then clearly if you, if you recall the pumping lemma, such a string, there will be

a particular V parts, now I pump down. On pumping down I become, I come into this string

or I am still greater than 2 n and then I come, again I pump down. 

What  is  this  idea,  why  that  is  coming  because  what  we  pump  is  that  most  of  size  n,

remember. That the V part, the size of V is less than equal to n. So from a large string I can

keep taking out chunks of n and then since that chunk can be of size n, therefore I will get at

least some strings in these strings. So this shows that this lemma can be used, so this can this

lemma can be used for an algorithm, right. So what I can do, given a DFA, all I need to do is

to look at its number of states that is n and then look at strings in this range and see whether

any of these strings is accepted by the DFA. 



But clearly this is an exponential time algorithm because a string of size n, how many strings

are there of size n, exponentially many and we would like to come according to this naive

algorithm you check each such string in this range, whether that string is accepted by M,

accepted by M and so on. There is clearly, if you think about there is a polynomial time

algorithm and whose basic idea is this that if, imagine this DFA and if there is, of course for it

to have some string, there has to be a path from Q0 to one of the final states QF, right in the

transition diagram graph. 

(Refer Slide Time: 52:08) 

 

And now in this graph if there is a cycle, then clearly we will be able to generate infinitely

many strings through this. And this idea is not just true of this idea that I am talking of, that if

I have a path from initial state to one of the final states and in that path there is a state on

which there is a cycle, that, then the resultant language will be infinite. That idea is of course

true even when the machine is an NFA. What about the case when the machine is an NFA

with Epsilon transitions? All  I have to make sure that the cycle does not consist  only of

Epsilon edges. 

So in other words what we are saying that if in an automaton, there is a path from the initial

state to one of the final states and in that path there is a vertex where there is a cycle which

does not consist only of Epsilon edges, remember our context for this graph is the directed

transition diagram graph. In that case that finite automaton will accept infinitely many strings

and that is a necessary and sufficient condition. And using that idea we can have a polynomial

time algorithm for deciding whether an automaton, finite automaton, whether it is DFA, NFA

or NFA with Epsilon transitions, whether it accept infinitely many strings. 



So  therefore  what  we  have  done  today  is  we  have  looked  at  some  decision  problems

concerning regular languages and we have found not only that all these decision problems

can be solved by an algorithm and these algorithms tend to be quite efficient polynomial

time. And as we look at other classes of languages later on, we will see that in fact there will

be many decision problems for which we will not have any algorithm at all, not to talk of

efficient algorithm. So in that sense our this class, regular language class is a very nice class. 

 


