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We will continue our discussion on closure properties of regular languages. The 1st thing I

would like to do is to once more review the result that we talked about in the last lecture,

which is one of the results that regular languages are closed under, closed under operation of

reversals. And recall by reversal we meant, firstly we can talk of any string x and then we can

talk of its reversal. For example if the string is 001, then the reverse, reverse string is just a

string such other way. And the reversal of the language L is all those xs such that reverse of x

is in L. And we give a very simple kind of example, that suppose L had 00, and 110, then L

reversal is going to be 00 and 011. 

And we also indicated, we can prove this property, that is regular languages are closed under

reversals in 2 ways, one was taking a DFA for a regular language L and then reverse all its

arrows,  the  directions  of  the  arrows  in  the  transition  diagram,  Avenue  initial  state  when

Epsilon transitions to the final, old final states of the DFA that accepted that language L and

have a new final state as the old final, old initial state of the DFA. So that is something that

we discussed. now another way we have proved it or we indicated that this result can be

proved by using regular languages. 
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So the proof by regular expressions, I would like to dwell on it for a little while because this

proof  idea is  quite  natural  and simple.  The step one in  the proof  was,  for every regular

expression say E, define ER called the reversal of E. Then step 2 was, what we intend doing

is the step 2 that if the language accepted by E is L, this implies that the language, sorry I

should not have said accepted by language, accepted by regular expression, I should have

said the language denoted by the regular expression E, Supposing if that language is L, that

the language denoted by ER which is defined in this in 1st step is the reversal of the language

L. 

And what steps one was was to define ER, so that was the definition of ER, step 2 we kind of

very quickly indicated what we meant but let us now go over this once more. So definition of

ER, look what we are trying to do is to give what is ER for every regular expression. Recall

that  whenever  we talk  of  a  regular  expression,  we keep some alphabet  in  mind,  regular

expressions over an alphabet. So let us say the alphabet is some Sigma and so this definition

is for this alphabet Sigma and then in this definition there is a base case, this definition itself

is an inductive definition, so therefore it has a base case and an induction case. 

So base case was,  you recall  what  are  the basis  for regular  expressions B over alphabet

Sigma, there are 3 base cases, so E can be in the base case either it can be empty or it can be

Epsilon or it can be a symbol a where a is an Sigma, right, I put the underline here, denote

that these are regular expressions. Corresponding ER is same. now notice in step 2 I am

supposed to prove this that if the language denoted by E is L, then language denoted by E of



R is L of R, reversal of L. now what are the reversal, what are the language denoted by these

3 base case regular expressions? 

This of course denotes empty set, this denotes just a language with the string Epsilon, this

denotes the language with just the string consisting of a single symbol which is a. now such,

each of these languages of reversal, here you will get back the same language and therefore

this is true, this statement is true for the base case have been defined E and E R for these base

cases in this manner, we can claim that this assertion is true for the base case. 
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now let us take one of the inductive part case. And now remember once we have defined the

base cases, I need to say what about larger and larger regular expressions. Anyway, remember

that  any other  regular  expression could  have been form either  by concatenation or  by +



operation by kleene star, star operation, right. So you know inductive cases we had said that

E1 and E2 are regular expressions, then E1 + E2, E1 E2 and E1 star, all these are also regular

expressions. now what we need to do in our attempt to prove this assertion having proved the

base case. 

now we have to say that suppose E1 and E 2 are 2 regular expressions, then inductively I can

assume that regular expressions, right. And now the assertion will say about E1 R and E2 R

the following, right.  We will  say that languages denoted by E1, its  reversal,  its language

denoted by E1 reversal. So let us let us just spend one moment on this. See from E1 we

obtained that the E1 reversal this syntactically. Right, by the rules that I discussed last time.

But maybe I will I will just discuss it once more here for one particular case. And this is

stating that inductively we can assume these 2 facts. 
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So let us just, looking at that let us just take the house the induction inductive case will go for

one interesting part  of the 3 cases, namely concatenation.  So we know that E1 E2 is the

regular expression because E1 is a regular expression and E 2 is a regular expression, right.

now we defined, remember that definition of E1 E 2, this regular expression was E 2 reversal

followed by E 1 reversal. And now this is how we had defined reversal for a concatenation

case. now inductively what we have, what do I need to show now? To show that the language

denoted by E1 E2 reversal is the reversal of the language denoted by E1E2. 

And now we use these 2 assumptions, these 2 assumptions are from fact that we are proving

this inductively, so we can assume, given a larger regular expression having done carried out

the induction so far that it is assertion is true up to some length and let say E1 and E2, their

lengths are within the standard deduction that you do on length of the regular expression. So

you see what is the language denoted by E1E2, it is, Supposing I have a string E1E2 in this

language,  then  such  string  is  there  in  that  language  because  that  string  can  be  seen  as

concatenation of 2 strings. 
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So as we are saying, that suppose z is in this language, language denoted by E1E2, you can

see that clearly that z is in the language denoted by the regular expression E1E2 if and only if

there are x and y, right, such that x, firstly z is the concatenation of x and y and x is in the

language denoted by E1 and y is in the language denoted by E 2. Right, clearly I mean that

we know from our understanding of regular expression that when I concatenate 2 regular

expressions, then this is what is the meaning of concatenation for regular expressions, the

language denoted by the concatenated regular expression can be seen in this manner. 

And remember we need to prove this, so what I need to show that z and L, if and only if this,

if and only if, I would like to show this, if and only if the reversal of the language zR is in the

language denoted by reversal of this. But by definition E1E2, reversal of that at the regular

expression, this is our definition, this is same mass, I can I can, just look at that definition,

you can see, let me replace this by E2R E1R. now by the way what is z of R, z of R is clearly,

z was xy, so you must read it from this side y to x, so yR x of R. now because y is in L E2,

language denoted by E2, y of R will be the language denoted by E2 R, right and x of R will

be in the language denoted by E1 of R. Right so this is true and therefore I can say this this is

proved for the concatenation. 

(Refer Slide Time: 17:22) 

 



Other 2 cases for induction over regular expressions have star and of course + and these 2

cases are also, in fact + is simpler, star is also simpler than this. So that completes the proof in

detail that indeed, so overall idea was that I wanted to prove this, regular languages are closed

under reversal. So you take a regular language, so let us say suppose L is regular and then

because L is regular and we can say let  E be the regular expressions such that language

denoted  by  E  is  the  language  L.  And  then  because  of  what  we  have  shown,  we  have

essentially we have shown that language denoted by E R is defined in this manner is going to

be LR, right. 

So you take a regular language, its reversal is denoted by a regular expression, there is a

regular expression which denotes the reversal language, right. And every regular expression

denotes only a regular language. So this language LR is also therefore regular and that is

what we needed to prove. 
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We have seen some closure  properties  for  regular  languages  but  still  we need to  like  to

answer this question that why studies such closure properties. There are various reasons, one

reason is this, suppose I have 2 classes, let us say C1, this is the class of languages, by that

now you know what we mean is C1 is a set containing languages, some languages, so some

class of languages C1 and C2 is another class of languages. now one big question is that these

classes  might  have been defined in  some manner, we would like to know whether  these

classes are same, whether you know or not. So one way of proving that they are not same is

that suppose I managed to show that C1 is, let us say C1 is closed under an operation, some,

let say something. 

Let me just denote this operation like this. And C2 is not closed under the same operation.

Then immediately I have that the 2 classes could not be identical. So this is called separation

of 2 classes C1 and C2, can be proved, finding out of some operation could be unary could be

binary, such that one class is closed under that operation, the other class is not closed under

that operation. So this is, I can actually illustrate this that we have seen regular expressions

that are closed under complementation, right. So C1 if you take regular languages, that class

is closed under complementation and now another class which we are going to study soon,

that is the class of context free languages, this set consists of all languages which are context

free, that class we will see that is not closed under complementation. 

And that immediately tells us that these 2 classes are different. Of course there are, we will

see in more direct manner that class of regular languages, the class of context free languages

are different. This is, but I just wanted to tell you which is one reason people study closure



properties and for, there are classes whose separation have been, whose separation has been

proved only using closure properties. One more reason which we can see in our context quite

easily that some proof might be done simply using closure properties. So let me give you an

example. 
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Consider this language L which is over the alphabet, binary alphabet such that the number of

zeros in x is different from the number of 1s, okay. So all those binary strings where, when

you count the number of zeros and the number of ones, these 2 numbers come out to be

different. So we are collecting all those strings and putting them in this language L and we

would like to show L is not regular. And one method we know of making, providing such

proofs is by pumping lemma. We can prove this through pumping lemma, let me just indicate

the proof. 



(Refer Slide Time: 24:30) 

 

Proof by pumping lemma, remember that pumping lemma proofs start with, it is a proof by

contradiction, we say let L be regular. Then we say let k be the pumping lemma constant for

L. And now the way such proofs will go that I will take some z which is in L, right whose

length is greater than or equal to k and get z1 on pumping z such that z1 is not in L. And it is

not immediate at least, all the other pumping lemma proofs we have seen, things were pretty

clear what the z you should take and what is the pumping you should do so that you get string

not in the language. now here you can take z to be, let say 0k, 1k factorial + k. 

And you see it is not, I will not give the details of the proof but you should be able to see this,

you see what is happening is that now u v part is here and it is the V part that we pump. So V

is some number which is between 1 and k, that is your V. All such numbers are divisible by k

factorial, right. So what you can do, so in fact let me indicate this. So this 0k is UV, UV, let us

say length of V is t and now I can write this as 0k - T, then 0T, this is your UV. Well, there is

something else here also, UV 0k is UV and some part of W, right. 

So let me let me write it as 0L UV and some part of W and that part of W which is in 0, so

this is of, this I will write it as 0k. And now because V is there which is the V part which you

can pump, you should be able to prove, you see for example if you pump twice, then what is

the length of the string that I will get, the only 0s part will be k + T, right. Because you have

pumped this part twice, so this part will become 0T, so k + T, right. So in this manner if you

pump from R + 1 times, what you are going to get is some, you can see it that it will become

k + some Rt and since t divides k factorial and this k k part will cancel and therefore I will be



able to get the z 1 which is not in the language because then the number of zeros will become

exactly equal to this. 
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I leave the details but the point I am kind to make is this is not a very immediate thing. On the

other hand, so let me reassure you a simpler proof using closure properties. Let me now give

a simpler proof of this fact that this language L is not regular using closure properties, simpler

proof by closure properties. This proof also starts by assuming that L is regular, let L be

regular, right. now we say then L complement is also regular, right. now how did I get this

fact, from this fact because regular languages are closed under complementation, so therefore

L  complement  is  also  regular,  right.  However  what  is  L  complement,  you  can  see  L

complement will be the set of all strings in which number of zeros and number of ones are

equal. 

So L complement is all strings over the binary alphabets such that number of 0s and number

of 1s are equal in x. Okay. So this is L complement. now since L complement is regular, this

implies L complement intersection 0 star, 1 star is also regular. Remember 0 star 1 star is the,

all strings which are of the form some number of zeros followed by some number of 1s, L

complement.  Why  can  I,  why,  what  is  the  reason  I  can  claim  this  that  L  complement

intersection 0 star 1 star is regular, L complement is regular, 0 star 1 star, this language is also

regular, regular languages are closed under intersection, so therefore this language is regular. 

But what is this language, L complement intersection 0 star 1 star, this language is nothing

but 0n, 1n, n, right. And do you see the contradiction, because this is a very simple language



to  prove  that  this  is  not  regular.  So  I  can  say  you  know  this  language  L  complement

intersection 0 star 1 star is not regular. And therefore we have come to contradiction, why

because I started with a regular language L and we did some closure properties operation,

operations which preserve regularity  and we got  a  language which is  not regular. Which

means our assumption must be wrong and therefore I claim, therefore L is not regular. So

here I got a contradiction, therefore L is not regular. 

you will definitely see that this proof is much simpler than directly applying the pumping

lemma. How does one figure out the string, you have to rack your brains to find such a spring

and then we need to, you know argue, once of course we found that name, that argument was

also little involved. But here all  the arguments are much simpler because we use closure

properties. you recall we have 4 different presentations for regular languages, what are they? 
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We can represent DFAs, this is one way of representing regular languages, NFA, correct, then

you have NFAs with Epsilon transitions and regular expressions. The point I am saying that

you can take a regular language L, I can represent that regular language by providing a DFA

that  would  accept  that  regular  language  and  NFA which  will  accept  the  same  regular

language, possibly an NFA with Epsilon transitions for the same regular language and of

course I can give a regular expressions which will denote the same language. now what we

are interested is in knowing, can I go from one representation to another and what is the time

complexity, how efficiently can I do these things? 



now by the way DFA to NFA, DFA to NFA with Epsilon transitions, these are immediate,

right because all, after all every DFA is an NFA, why we have said this? Because NFA says

simply that from every state there can be 0 or more number of transitions on a symbol, DFA

just uses one transition per symbol from a string, exactly one transition. That is fine, the DFA

is also an NFA and NFA is also an NFA with Epsilon transitions. So these conversations DFA

to NFA, DFA to NFA with Epsilon transitions or NFAs to NFAs with Epsilon transitions, they

are not of interest because one is a more generalised version of the other. 

NFA is a more generalised version of DFA, NFA with Epsilon transition is a more generalised

version of NFAs. So that is this way it is simple. 
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What about going from NFA to DFA, we know the construction and we also know that if and,

there can be NFAs such that let me write it down there can be NFAs with n states such that

any DFA accepting,  or let  me just  use equivalent,  you will  understand what I mean, any

equivalent DFA, that means the new DFA as accept the same language as the NFA. So there

can be, what I am saying is there can be NFAs with n states such that any equivalent DFA

will have at least 2 to the power n states. And we have seen an example like, you know let say

kth bit from the right-hand is 1 for binary strings, recall that example. 

NFA has you know not do many states but the corresponding DFA and 2 to the power n states

and this  is happening again because of the subset construction going from DFA to NFA.

Because that our way of doing that was the DFA will have the number of, the set of states of

DFA will be set of all subset of states of NFA. So that way, there is an exponential growth as



we go from NFA to DFA, there can be such exponential growth in general. So this is an

exponential algorithm. That is, we cannot do better than that because of this fact. What about

going from NFAs with Epsilon transitions to DFAs? 

The only different thing between NFA and NFA with Epsilon transitions says that we need to

take  closure,  right  or  states  or  set  of  states.  The  closure  is  not  an  expensive  operation,

however  because  anyway  we  are  going  from  NFA,  so  in  this  case  also  that  subset

constructions will be there on top of that there will be that closure operation but closure

operation is efficient, right because it is kind of reachable. Closure of a state is the set of all

states reachable from that State using only Epsilon transitions. So reachability can be done in

sufficient time. And therefore this also however because we are going from NFA to DFA, the

number of states can blow up, so this is again exponential time. 

What about regular expression to DFA, this? Actually we what we did was, what we had

proved was this that you can go from a regular expression we can get an NFA and that can be

done quite efficiently. Because that inductive proof that we gave, that we gave NFAs for the

base cases of regular expressions and then we showed for the inductive cases how the NFAs

will, we built up from the component NFAs of the smaller regular expression. But this can be

done efficiently, so in fact linear time at let me just write this conversion can be done in

polynomial time. 
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This can be done efficiently. Now remember we also discussed going from DFA to regular

expressions and same idea can be can be used for NFAs regular expressions or NFAs to

Epsilon, NFAs with Epsilon transitions to regular expressions. What about this algorithm?

Remember  what  we  did  was  we  took  a  DFA and  then  we  wrote  a  number  of  regular

expressions which are of this type that if the DFA was q, Sigma, Delta, q0, F and I will just

indicate this so that you remember what we did. We took the set of states as q1, q2, qn and we

defined regular expressions of this form R ij k to be denoting all those strings over Sigma

which can take the machine M from qI to qJ without passing through any states whose you

know this this this number, whose number is larger than k. Right. 

We built this thing and then finally when we got R ij n, using some of those R ij ns we

defined, we got the regular expressions which is which denotes the same language as the

language accepted by M. And how, what did we do, we obtained R ij k from R ij k - 1s. And

here if you go back to that proof, the length of R ij k, the length can increase, right. Recall, let

me just write R ij k was defined to be firstly R ij k -1, the regular expression for this + R ik k

-1, Rkk k -1, this whole star. Then Rkj k -1. You see if the regular expression with superscript

k -1s we had, then we could build the regular expressions with ² k. 
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But in the process 1, 2, 3, 4 such things were using, so in this, in this definition the length can

increase by factor of 4. And so therefore you see what happens is as you go from here to here,

how many times this factor of 4 increase happens, as many times the number of states. So

you have a 4, 4 to the power n order algorithm. So this is we cannot do better going from

DFA to regular expression or from NFA to regular expression, there can be a blow up of,

exponential  blow  up  in  the  length  of  the  expression.  And  therefore  the  algorithm  is

exponential. 

 


