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Lecture 1 
What is theory of Computation?

Set of membership problem, basic notions like alphabet, strings, formal languages. 
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Name of this course is theory of computation and let us spend a little time to  understand  the

scope of this course. Now we have the word computation in the title and it is saying that ever

course  is  what?  The  theory  of  this  entity  called  computation.  Now  when  we  talk  of

computation,  today  clearly  what  we  understand  as  computation  is  that  you  write  some

programs and you run the programs and computers and then in that way you carry out a

computation.

So  fundamental  activity  behind  computation  or  the  way  computation  is  carried  out  by

executing programs, so what are programs? Let me let me write this term which we are all

familiar with programs and anyway we can see that our theory is about programs, right?

There can be various theories I need to now say clearly, specifically what we mean by our

theory that we will discuss here.

But again if we think of the word program we know there is something fundamental behind

this term even more fundamental because after all a program is nothing but an algorithm

expressed in a programming language. So we can say programs expressed algorithms and you



see already we are making an abstraction in this, that we are saying that programs express

algorithms, so more fundamental notion then programs is the notion of an algorithm.
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So going back again what we can see? That our theory is about theory of algorithms, right?

Theory of computation, theory of programs and theory of algorithms all more or less denote

the same thing in our context. What are algorithms for? We all know that but let us let us let

us annunciate clearly, we know that algorithm what it does, is it computes or it gives us a

recipe for computing and input output transformation.
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So  let  us  again  write  this  an  algorithm  is  a  recipe  for  carrying  out  input  to  output

transformation this seems obvious enough that when I have a program, it is executing an

algorithm  and  what  is  that  algorithm?  That  algorithm  is  a  finite,  effective,  step-by-step

process or description of a process which we are calling a recipe more familiar  term for

carrying out transformation of the given input to an output.



(Refer Slide Time: 4:56) 

Another way of saying this would be that an algorithm tells us how to compute a function?

So you see if I write like this recipe for carrying out input to output transformation. So in

picture it will be like this is an algorithm and as we know that it tells me for a given input

how to get it out but then we can see this as telling me what is the output for, let us say the

input X?

If I call that output, if I term that output for X as f of x then we are we are dealing with an

even more  fundamental  familiar  concept  is  that  of  a  function,  right?  So as  you know a

function f is a mapping from some domain to some range and in this case the domain is this

domain of all input and the range is the range of all outputs for a specific function, right? You

may have an intuitive understanding of a function, right?

You may have an idea what the function should compute? In other words given an axe what

effect should be but that is not enough for actually obtaining given an X, the value fx for that

what we say is that we have to give an algorithm to compute that function f. So we can say

that  an  algorithm computes  a  function  again  that  is  kind  of  very  straightforward  simple

understanding, right?
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Every  algorithm  computes  a  function,  right?  So  let  us  write  this  here  every  algorithm

computes or I should have said tells us how to compute a function? The distinction should be

clear even algorithm and function we all understand, function is an abstract notion which tells

me that here is this mapping between input and output domain and range and algorithm is

telling me how to obtain the output for a specific input, right?

In other words we are using the word computes in that sense. Now I can say basic goal of our

theory is to figure out for what functions we can have algorithms? Now that might sound a

little unfamiliar we may think that if we can dream of function, if we can define a function, if

we  can  in  some way  tell  somebody  else  about  a  function  then  that  itself  should  be  an

algorithm but really that is not the case.

For example, let me let me provide a very simple illustration. Consider this function which is

is-prime, right? This takes a number to let us say to my domain is the set of numbers and the

range is yes or no and by that what I mean is, supposing I say is-prime and then apply it on a

number then it is going to be, the output is going to be or the answer the value of this function

on the on the argument n is going to be either yes or no.

And now let me define when I want the answer to BS and when I want the answer to be no.

So let us see it should be yes if n is a prime, the number n you have given as argument is a

prime and it should be no if n is not a prime, right? So you have defined this function but you

see clearly we are not saying, this definition itself is not telling me given an n how to actually



come up with the answer with the right answer and that would be as you know and you have

surely written a program to compute this function.

You will have to give an algorithm which will tell me how to give an argument n which is a

number  n,  how to figure out  whether  it  is  a  prime are not? And that  how to should  be

expressed in terms of simple operations which can be carried out on a computer, right? So

these are all we know in other words we would like to write a program to compute this much.

So you see that underline, that program, that algorithm is completely a function.

So coming back what we are trying to see? That it may be possible to define a function but

the definition of the function does not immediately point out in all cases to an algorithm to

compute that much. If that is the case then at least you can now see that there is a possibility

that I may be able to define a function I may be able to describe what the output should be

without having an idea how to obtain the correct answer?

Although you have not possibly encountered such situations in our programming experience

but it might surprise you when I tell you that actually it is a fact that for most functions there

are no algorithms to compute. In other words if you think of the class of all functions then

only a tiny fraction only a tiny subset of these functions admit algorithms to compute them

and this is something which we will be able to prove which we will be able to demonstrate in

our theory. In other words let me say of a primary goal of our theory is going to be to figure

out which functions can admit or will admit algorithms to compute them.
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Basic goal of our course that we are going to go through in the series of lectures may say as it

is  to identify the class of functions which admit algorithms to compute.  So what we are

saying is that there are some functions which are of the kind that for function f there is an

algorithm to compute f,  right? And there are some other functions rest  do not admit any

algorithm to compute them.

In this class of functions that if you give me an input a then I will be able to tell you by

carrying out by computing the corresponding algorithm for f, what the value of the function

will be on the argument a whatever be the algorithm? But in this case it may be that for some

inputs I will be able to give but there may be inputs for which I will not be able to tell you

what the output is.

In other words I will not have an algorithm in general to compute that function and as I said

that most of the functions, unfortunately if you like they fall in this class that they do not

admit any algorithm to compute them. 

So at the end of the course in principal you should be able to not only have examples which

are very clear and which are in a way important functions for which we will not have any

algorithm we should  be  able  to  prove  that  such is  the  case  with  those  functions  and in

principal again we will have the knowledge of the techniques to demonstrate that a function

does not admit any algorithm to compute them and that as I said to be at the very end of this

course.
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Now the way we look at this problem although this is the fundamental thing, this is our basic

goal is to identify the class of functions which admit algorithms to compute them but you will

see  in  the  course  actually  we will  not  talk  about  functions  instead  we will  talk  about  a

problem which is kind of related and I will have to show you the relation and that problem is

called  membership  question.  You know given  as  set  and  given  an  element  whether  that

element is a member of that, so this is a question that will engage us for most of the course

and let me clearly explained what that question is. 
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So let  me understand let  us  understand what  this  problem is? Set  membership  problem,

actually very simple to state, it is a very general problem that you know you have some set S

and our problem is that given any a as input to decide if a is a member is an element of the set

S, so very simple, right? There is a set, in some way we understand what is that set? And now

you give me some element a and we would like to know whether this element belongs to the

set S or not.

Now as I said all the time in this course will really be talking about this problem, what we

will do is, we will be able to show various kinds of algorithms not the way you study in

algorithm’s course but through various models of computation the classes of set for which we

can carry out this problem.  
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Now what is the connection between set membership problem and the basic goal that I had

talked of here? You see if you think of functions f then remember that we said that  function

F, notationally we always write like this that a function f is a mapping from some domain to

some range R. Now you might know that there is a very natural set which is associated with

any function and that set is called the graph of f, right? 
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And that graph of f is a set and what is that set? That set is a set of tuples a, b such that f of a

is equal to b. Now the point is this that with every function f the we can associate such a

graph and now suppose we cannot decide we cannot give an algorithm to compute or to carry

out or to solve the set membership problem of graph of f.
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So  let  us  write  it  down,  suppose  we  show  that  there  is  no  algorithm  to  solve  the  set

membership problem for the set graph of f, now but this is a set and as we said this is this

particular set is defined like this. Suppose we show that there is no algorithm to solve the set

number problem for the set graph of f then we can conclude that there is no algorithm to

compute f also.

So what I am saying is that if we show that there is no algorithm to solve the set membership

problem of graph f then there is no algorithm to compute the function f itself and this is quite

easy to see and we can very easily prove the equivalent contrapsoitive statement and which



will see that if there is an algorithm to compute f then there is an algorithm to solve set

membership problem of graph f.
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So if you have an algorithm to compute f, right? Then if somebody gives you this tuple a, b

now and you have  an algorithm to compute f  then  what  you can do is  look at  the  first

argument and compute f of a using the algorithm for computing f, let me write this suppose

there is an algorithm to compute f then for a, b given as input we compute f (a) using the

algorithm for computing f, right?

Somebody has given you the algorithm to compute f, so you use that algorithm to compute f

of a, a is what? The first argument of this tuple and now supposing the is f of a then of course

a, b this implies actually b equal to f of a if and only if a, b is a member of graph of f, right?

So therefore using the algorithm for computing f I can solve the set membership problem, the

set membership problem was given a,b check whether this tuple is a member of graph of f.

This tuple is going to be a member of graph of f, if and only if f (a) is equal to b and now I

have an algorithm to compute f and therefore clearly I take the first argument I compute f of a

check whether b is equal to f of a and then I can answer whether a, b is a member of the set

graph of x. So therefore this statement we have proved it is so easy, right?

Now  if  I  can  show  therefore  that  there  is  no  algorithm for  computing  for,  there  is  no

algorithm to solve the set membership problem of graph f then I have shown that there is no



algorithm to compute f and this is the reason you see that a function which is not computable

we will be able to get to that fact while looking at the graph of that function and grouping that

graph of f is something is a kind of set, is set for which I have no algorithm to solve the set

membership problem.

Now what, what does it by? You know instead of functions then I can talk only about sets and

sets are more fundamental and in a way simpler objects  and therefore the theory at  least

notationally becomes simpler although it manages to show existence of functions for which

we have no algorithms to compute those functions through the study of some kind of sets and

this  is  the  reason  most  of  the,  in  fact  entire  course  will  concentrate  on  sets  and  their

membership problem rather than functions.

In fact,  although that  is  the basic goal  in our mind because we would like to talk about

programs and whether or not we can have a program to compute certain things. You will see

in fact that this problem is not something we tackle in its and it is generality, what I mean is

that the kind of sets for which we will consider set membership problem, the sets are going to

be  very  very  special  kind  of  sets  and what  are  the  sets  for  which  we will  consider  set

membership problem?
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If these sets are, let me write it. Our sets are going to be sets of finite strings. Let me explain

these terms and to talk of strings I need to first talk of alphabets and to talk of alphabet I need

to talk of symbols. Now, so let me first use the term symbol, what is a symbol? We are not

going to define it  only thing we would like to say about symbols that they are as you know

them for example 0, 1 these are symbols, right?

Similarly a, b these are symbols, right? And another term that we are going to use is called

alphabet. So an alphabet is a finite set of symbols. As an example this is an alphabet, right?

There are 2 symbols 0 and 1, the set  comprising of these 2 symbols is an alphabet,  also

another example could be a, b, c, d of the way to z and you can of course give many other

examples of finite sets which are made up of or which comprise of symbols.
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And now let us just consider this set a, b, c to this is an alphabet because these consist of, it is

3 members 3 symbols a, b, c and again another familiar term is a string over these symbols.

So what is a string? String is we just write an ordered way, we write this symbols one after

another after some point. So let us say b, a, a, b, c this is a string over this alphabet, so we can

we can we can formally define all these more carefully but this notion is so simple you get it

immediately that this is a string in which the first symbol is b, second symbol is a, so there is

a notion of ordering.

We can talk of first, second, third, fourth, fifth and also there is a notion of length because

this has, you can see its length is 5 because it has 5 symbols, right? And this is also a finite

stream they could have been in finite strings over the same alphabet but we will  restrict

ourselves to finite strings over an alphabet. 

Now suppose Sigma is an alphabet then Sigma star denotes the set of all finite strings over

Sigma, okay. Now supposing my sigma 0, 1 suppose as example I take Sigma is 0, 1 then

what is Sigma star? It is not difficult to see, so what are the strings over this alphabet they are

going to be? Binary strings and we said Sigma star denotes the set of all finite strings over

Sigma and this is the binary alphabet, so therefore Sigma star in this case is going to be the

set of all finite binary strings.
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So as we are saying that consider the binary alphabet which consist of just 2 symbols 0 and 1,

in that case the Sigma star is going to be the set of all finite binary strings, right? By this,

what do I mean to finite binary strings? You know we do not allow in Sigma star to have an

infinitely long string but all strings whose lengths finite they will be members of Sigma star

and those are the finite binary strings.

So there is really no upper bound on the length of strings which we have in Sigma star but at

the same time every string, any particular string that we take in Sigma star that has a finite

length, is this notion clear? That this is an in finite set and all its members are you know are

finite lengths like set of numbers set of integers that is an infinite set each integer itself is

some member of finite object.

It is let us say 10,000 it will be 1000,000,000.00 it could be 100,000,000 so then numbers can

be arbitrarily large. Similarly here the strings can be arbitrarily large but each string in Sigma

star is finite, right? So now that is one very important notion that we are going to introduce

that notion is that of the formal language. A formal language L over the alphabet Sigma is

subset of Sigma star, okay.

This is a formal language L over the alphabet Sigma is a subset of Sigma star, right? Sigma

star recall it has the set of all  binary strings over the alphabet Sigma and you take some of

them, possibly an  infinitely many of them leaving may be some out is and that constitutes a

formal language over the alphabet Sigma. So it is clear that for this alphabet for Sigma is



again binary alphabet 0 1, 1 1 0 0 1, 01 1, 1 0 101 1 1 0, right? This is a set of strings over the

alphabet 0, 1 and clearly this is a subset of this set Sigma star, so this is a language L.

So we can say that this is an example of a binary language because all its strings are over the

symbol  0,  1  and this  is  of  course the  finite  language but  more interesting  would  be the

example let us say L1 which is x is in 0, 1 this is an alphabet. Now I am putting the star over

it, so I mean x is a binary string such that x has even number of 0’s and even number of 1’s.

How many such strings are there? Clearly infinitely (()) (39:04).

At the same time not all binary strings are in this language L1, so L1 is an example of a

language over 0,1 which is in finite, right? But which is not the entire Sigma star. So this

language L1 is a proper subset of, we can write like this is a proper subset of Sigma star. So

we have introduced number of terms, let me just enumerate them and briefly explain once

more what each are, each of these symbols is.
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First of all we talked of symbols then we talked of alphabet, right? Then we talked of strings

over an alphabet then we talked of Sigma star for alphabet Sigma and finally we talked of

formal language over Sigma, very quickly symbols are like 0, 1 these are symbols, alphabet is

set of symbols, so this is an alphabet string over an alphabet over this alphabet 1 1 0 101 1

this is a string, right?



Sigma star over this alphabet is the set of all finite binary strings and a formal language over

this alphabet is just a subset of Sigma star, L is a subset of, for this particular alphabet 0, 1. So

therefore L such a formal language is  also a set  which has a  number of finite strings in

general over the alphabet that we are dealing with in this case, in this example at least that

alphabet was the binary alphabet.

Now the connection with what we were saying before is this, that we shall be concerned with

the set membership problem of formal languages. So now therefore our problem is going to

be somebody has some formal language L in mind and the problem therefore is very concrete

they give me string and I have to determine whether that string is a member of the formal

language.

Now very briefly although we had said in terms of the graph of the function is can be seen as

a  set  but  then  what  is  the  justification  of  talking  about  restricting  ourselves  only  to  set

membership problems of languages and that is because the idea is really very simple, you see

when you write a program, right? Then that program take some input and that input is, is

what?

Is actually a string because that input you have you need to key it in through a the keyboard

or maybe it is coming through a file whatever it is you can think of that input to be a string

over some alphabet and the output is again in general is of course not yes or no as in the set

membership problem but here we appeal what we have said earlier? Because our goal is to

show that something cannot be done by programs. 

And so if that is a function then if we can show that the corresponding graph which is going

to be in this case going to be basically strings you know basically graphs, those graphs of

those functions that we are interested in, since our inputs are going to be strings, outputs are

going to be strings, so these are going to a pairs of strings pairs of strings themselves can be

seen as a string and therefore it is really a set membership problem where the sets are really

sets of strings and these strings are finite strings, right?

I mean you never or it does not make sense to say that my input is a string which is infinitely

long because such a input you can never even provide to the program completely for that

program, your program to work on that input. So inputs are always finite and in fact there are

always finite strings in the programming context. 
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So therefore this  restriction is not something which is  very restrictive,  right? Although it

seems the great restriction from functions we are coming to set membership and then again

we are saying that we are not interested in all kinds of sets but only sets which are just sets of

strings over finite alphabet. Now that really is the basic issue in this course that you know

ultimately of course we will be talking about you know this question of whether certain set

membership problem admits an algorithm or not. 

But we will come to that goal in a series of steps if you like. So what we are going to do? Is

we are going to do we are going to invert the problem in some sense. 
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We will think in terms of models of computation, let me write this down, right? And that

means some abstract way we are seeing we will  describe a class of algorithms and the that

abstract we in fact going to be by specifying what are called automata? See these are again

terms which will be much clearer when we see really examples of when we deal with them.

So our models of computations, let me just say this for the time being are automata of various

kinds. So it will define a class of automata and then we will ask the question what kinds of set

membership problem this class of automata can solve? The kinds of automata that we are

going to see.
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We will start with a very simple class of automata they are called finite state automata. Now

even here there will be various crimes we will see later the deterministic not deterministic

and then we will study what kinds of languages for which this model of computation can

solve their set membership problem? After which and  this is going to take at least you know

15 to 20 lectures and then we will talk about in terms of automata it is going to be pushed

down automata.

And again  we will study the classes of languages or which pushed down automata will be

adequate to solve their membership problems then finally we will look at the most general

class  of  automata which is  possible,  you might  have heard of this  term,  you have heard

Turing machines and as we go along there will be many other things you know we will study

and for example we will study the notion of grammar and here the study regular grammar,

context free grammar, we will briefly mentioned what are context sensitive grammar?

And then finally the unrestricted grammar and there will be  some correspondence with these

things that we are going to study and it is at this point where I said at the almost when we

come to the end of the course or in the last part of the course we are going to encounter set

membership problems for which there will be no algorithms to solve, we will stop here and in

the next lecture onwards will start with finite state automata (()) (51:16) and we will we will

be dealing with them for quite some time.


