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Today, we will discuss a structure called Matriod, and we will discuss an algorithm 

related to it. Matriods provide in fraction for many problems in graph theory and in some 

other domains. 
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A matriod is a couple where S is a finite set of a elements and this script I is a collection 

of some of the subsets of S, which satisfy certain conditions. Condition 1 is that, if A is a 

subset of B and B belongs to I, then A also belongs to I. The second condition, that this 

collection should satisfy is that, if A and B both are members of I and the cardinality of 

A is no greater than the cardinality of B. And there is some element x in A minus B that 

is to say, if visualize this way, then there is an element y in B minus A, such that B 

minus y union x also belongs to I. These two conditions must be satisfied by this family 

of subsets of S. 
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Here is a small example so I have set S containing 4 elements and the script I, the family 

of subsets contain the singleton 0, 1, 2 and 3, this five additional sets containing 2 

elements. Now, if you consider this set and this set, if take this as A and this as B then 0 

belongs to A minus B then there is an element in D namely, 2 such that, B minus 2 union 

0 namely 0, 1 is also a member of this collection. The subset property is quite trivially 

satisfied in this case so this one can verify that this is an example of a matriod. 

Now, there is one theorem, which I will leave for you to do verify yourself and the 

theorem says that, the cardinality of every maximal set of I is same. By maximal set, we 

mean those sets of I, which are not properly contained in any other set of I and the claim 

is that, all sets have same cardinality in a matriod. One more thing, we will call the 

members of I independent sets for some historical reason. So, in our example, all the 

maximal sets are 0 1, 0 2, 0 3, 1 2 and 2 3, they all of course, have cardinality 2. 
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Now, we define a weighted matriod, a weighted matriod is a three couple, S I and a 

weight function where, weight function assigns weight to every members of S where, 

weight is a function from S to real numbers. We will accept both positive and negative 

numbers now then the weight of any member A of I is given by some w of x, x 

belonging to A. 

It is simply the sum of the weights of the elements of independent set A now, our 

problem that we want to address today, is to determine one of the maximal independent 

sets, one of the sets with largest cardinality in I, which has maximum weight. So, the 

problem that we want to address is to compute a maximum weight maximal independent 

set notice that, this maximal refers to the cardinality of the set and this refers to the 

weight. 

So now, we are going to give a simple method and I will not call it an algorithm yet, will 

verify the correctness of a method and then later on will look at an example by taking an 

application of a matriod method to a graph form. So, let us take the algorithm, which 

seems pretty trivial, a greedy algorithm to compute such a set. So, you are given a 

weighted matriod, in step 1 we will sort the elements of S in non increasing order of their 

weights. 

For our convenience, I will assume that the ordering is x 1, x 2, x 3 where, the weight of 

x 1 is greater than equal to weight of x 2, weight of x 2 is greater than equal to weight of 



x 3 and so on. In the second step, we take an empty set and now, we iterate in the 

following fashion, so all we are doing is, we start with an empty set and starting from the 

highest weight element, we put it in set and check, whether it is still an independent set 

because we are interested in independent set. 

If it is still independent then we update A by putting that element and then move on to 

the next element and finally, we return the final output A. Now, notice that, in this so 

called algorithm, there is a step which checks whether certain set is independent or not. 

Now, in general, a matriod may not be given to you in explicit manner and hence, one 

does not know, whether such a step is feasible to evaluate and that is why, this is not 

quite in algorithm in classical sense because each step must be feasible. But, if it is 

possible to evaluate this, to check the membership of this entity then it becomes a 

meaningful algorithm. So, next thing we are going to do is, try to prove that this indeed 

computes our object namely, the maximum weight maximal independent set. 
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So, let us start with first claim, in order to define this claims, I am going to use certain 

notation, I will denote the value of A after i th iteration by A i, A subscript i. So, the final 

output is A n will say, A n which is the value of A return in final step so first claim is 

that A n is A maximal independent set. It is quite obviously, an independent set because 

in each step, we have checked whether current A belongs to script I. So, it is obviously, 

an independent set, but it is not clear, whether it is A maximal independent set. 



So, let us start prove this suppose, A n is not a maximal independent set suppose, A n is 

not maximal then there exist a set C in I such that, A n is strictly contained in C, this 

means that, it is contained in C but it is not equal to C. Now, since this is strictly larger 

than A n then there must be some element x j in C minus A n, in the difference set there 

must be an element x j. So, let us just put the picture here, this is A n and this let us just 

draw this way, this is C and here is an x j. 

Now, let us look at all the elements of A n with index less than j, let B be the elements of 

so B is a subset of A. Now, what we have decided to do is, call the set A after i th 

iteration by A i, A subscript i then notice that this set from our notation B is precisely A j 

minus 1. Because, from A n we have deleted those elements, which had index greater 

than j, greater than or equal to j of course, x j is not in A so does not matter. Then in the j 

th iteration, we must have tested whether A j minus 1 union x j belongs to I, since x j 

belongs to C minus A n, is not a member of A n. 

Hence, we must have found that, A j minus 1 union x j does not belong to I, this is the 

exits does not belong to A n hence, we must have found that, this set is not in I. Now, on 

the other hand but notice that A j minus 1 is a subset of A n hence, it is a subset of C and 

x j is also a member of C. So, we conclude that, A j minus 1 union x j is a subset of C 

now, from matriod condition 1, from 1 A j minus 1 union x j must belong to I. So, we 

find a conflict here, a contradiction hence, it is not possible to find any element x j in 

this, which implies that A n must be itself a maximal independent this is what, we 

wanted to establish that, at least it is a maximal independent set. 
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Next, we want to prove another useful claim and the claim is the following, let B not the 

same as A n be a maximal independent set. So, I have some another maximal 

independent set B, let us just draw the picture here of course, both of these subsets are 

same cardinality, because we have already claim that, all maximal independent sets have 

same cardinality. Let s be the index, the smallest index of the elements in A n minus B, 

let s be the smallest index in A n minus B and t be the smallest index in B minus A n 

then we want to prove then we want to show that, s is less than t. 
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The proof of claim 2 so what we have is set B and set A n here, we have x t where, t is 

the smallest index in this region and x s where, s is the smallest index in this region. 

Assume the contrary, assume that, t is actually less than s and let us arrive at some kind 

of contradiction. Now, let C be the set of elements x i in A n such that, i is less than t so 

we are taking all the elements of A n with index less than t obviously, t is not in A n so it 

will always only up to t. 

Now, clearly as you noticed earlier, again observe that, C is A t minus 1 and we also 

know that, C is a subset of B. Notice that, all the indices in B minus A and in A n minus 

B are greater than or equal to t hence, everything smaller than t, must be in the common 

region. Hence, our particular set C must be contained in the intersection of the two now, 

we must have found that, A t minus 1 union x t does not belong to I because we rejected 

x t from A n. 

So, at this stage, we must have found that, this union is not in I but what we notice is 

that, A t minus 1 is in B, we also notices that, x t is also in B. So, we notice that A t 

minus 1 union x t is the subset of B and from the first condition of matriods, from 

condition 1, A t minus 1 union x t must belong to I. Once again what we have found is, 

there is a contradiction hence, our assumption must be wrong. And since s and t are 

distinct, the only option left is that s is less than t, strictly less than t so that is the 

objective of the second claim, which we have established. 
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Now finally, we will prove claim will establish, let A n is indeed a maximum weight 

maximal independent set. Now, to prove this, let us look at those sets which are maximal 

maximum weight among the maximal independent sets. If A n is already in this then 

there is nothing to prove so let us assume that, A n is not a max weight set so there has to 

be atleast one maximum weight maximal independent set in the collection. So, suppose, 

B 1, B 2, B r these are all maximal independent sets with maximum weight notice that, r 

has to be at least one. 

So, let us just look at the picture here, we have A n and then against each B 1 through B 

r, there is some s 1 and some t 1 upto s r and t r. This s 1 is in A n minus B 1, it is the 

smallest index among them, t 1 is the smallest index in B 1 minus A n and we have 

already shown that, this is the inequality. So, we will claim, that the same is true with 

each one of these sets now, among all these, let me pick the largest s value. 
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So, among these s 1 through s r without loss of generality assume that, s 1 is largest, 

without loss of generality suppose, we assume that, s 1 is the largest index. Now, look at 

this set B 1, we have x s 1 and we have x t 1 so from condition 2 of the matriods, B 

prime which is B union x s 1 minus some element x j, also belongs to I where, x j is 

some element in this region. So, it could be x t 1 or it could be any other element in this 

part now, since j is greater than equal to t 1 because by choice, t 1 was the smallest index 

in this region. 



And we have already proved that, x is less than t 1, s 1 is less than t 1 so we have j 

greater than s 1. So, what we notice is, that the weight of this element is greater than 

equal to weight of this element because our indexing is in non increasing fashion. So, the 

weight of x j is less than or equal to weight of x s 1 hence, the weight of B prime is at 

least as much as the weight of B. Now, B is one of the maximum weight maximal 

independent set so we conclude that, B prime is also a max weight maximal independent 

set. 

So, let us come back to this picture and what we conclude is, that the set B prime must be 

one of these so the question is, what would be the corresponding s i and t i. So, let me 

just plug in one set here, call it B p, we have s p here, we have t p here and of course, that 

inequality holds. And let this be same as our B prime, that we have calculated now, in 

our picture, x s, x t, x j what we have done is, we have deleted this and we have included 

x s in our B prime. Now, if you look at B prime minus A n then the smallest index in B 

prime minus A n must be strictly larger than s. 
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So, I will write down that, since A n minus B prime is actually A n minus B minus x s 

hence, the smallest index in A n minus B prime must be greater than s. Now, we had 

labeled our B prime as B p, our B prime a same as B p and the corresponding smallest 

indices in their complementary regions where, t p and s p. So, from this observation, we 



conclude that, s p is strictly larger than s, we had been saying s 1 so I will call it s 1, this 

is larger than this. 

Now, if you recall the choice of s 1 was based on the fact that, this was the largest index 

in the list of a size that we had listed that but we now have a bigger s then s 1. So, this is 

again a contradiction, this is observed and hence, our assumption that, A n is not a max 

weight maximal independent set must be wrong. Hence, A n must be a max weight 

maximal independent set so we have now establish, that the algorithm directly computes 

the desired object namely, one of the maximum weight maximal independent set. 

So now, here is one question for you suppose, I want to compute, the problem now is, I 

want to compute one of the minimum weight maximal independent set, compute a 

minimum weight maximal independent set. So, the only change here is that, instead of 

maximum I want to compute the minimum weight so how do we solve this problem. 

Now, the answer is very simple, observe that we are free to choose negative and positive 

weights hence, we can actually invert the weights, if we replace the weights by their 

negation. 
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So suppose, I define a new matriod where, the weight function is different, everything 

else is same, at this of a is equal to minus of W of a for every a in S. We just do that and 

then run over algorithm to compute a maximum weight in new sense, we will get a 

minimum weight in the old. The implication of this observation is, that in our algorithm 



the first step where, we are sorting the elements of S, for minimum weight we will have 

to sort in the reverse order, we will have to sort in non decreasing fashion. So, the first 

element will have minimum weight, next will have the next and so on hence, we can 

solve both the maximum and minimum problem. 
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So now, just look at the time complexity of this ((Refer Time: 42:05)) algorithm notice 

that, we do not have the answer to the question of membership. We do not know, how 

much would it cost, it depends on how our matriod is represented. 
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So, let us suppose, it takes f time to determine the membership of I, if I assume f is 

independent of the size of the set, for which we are checking the membership. In that 

case, the time complexity is n log n, this is because we have to do sorting, n is the total 

size or cardinality of S plus in each step, we do one membership check and one constant 

operation. So, may be we can say, this is the total cost of the for loop, so the cost looks 

like this. 

In case, f depended on the size of the set we are testing, that could happen then let us say, 

the cost is f r where, r is the size of the set being tested. Then this cost would look like 

order n log n plus sum f i, i going from 1 to n notice that, in i th iteration the set we are 

testing, cannot have size greater than i. So, this would be an upper bound to the total cost 

of computing the set A n or the final set A. Now, what we will do is, we will discuss one 

application of this abstract structure in graph theory and show that, this simple algorithm 

computes a desired object in that case. 

As one comment, that I want to make in this about this algorithm is that, this is a greedy 

algorithm, every time we make a decision about whether x i must be in the final set or 

not. We do one test and then finally, put this back into the set A and we never go back on 

it so the decision is made then and there, we do not wait for some other computation to 

make this decision, whether x i should go into the set A or not. So now, I am going to 

just introduce a problem in graph theory and then in the next lecture, we will show how 

this algorithm works for that graph. 
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The problem that we will discuss in the next class is, computing a spanning tree in a edge 

weighted graph such that, the weight of the spanning tree is minimum. Suppose, we are 

given an edge weighted graph V E w, the weight of any sub graph V prime comma E 

prime is sum w e for e belonging to E prime. So, we define the weight of any sub graph 

as the sum of the weights of the edges of that sub graph. Then, we would like to compute 

a spanning tree of the given graph with a condition, that the weight of that spanning tree 

is minimum. Such that, it is weight is minimum, this is the problem that we would like to 

address in the next lecture. 


