
Parallel Computer Architecture
Hemangee K. Kapoor

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Week - 02
Lecture - 09

Lec 9: Shared Memory Paradigm

Hello everyone. We are doing module 1, Introduction to Parallel Architectures. This is
lecture number 9. Shared Memory Paradigm is what we are going to see in this lecture.
In the previous lecture, we have seen the different layers of the computer system and also
discussed the way a parallel program can interact with each other. One was a multi
programming method where the programs were completely independent of each other.
The second was a shared memory paradigm where the programs or the threads joined at
the memory. And the third one was message passing where the programs joined at the
interconnect.

So these are the three main topics or divisions which we had seen. So in this lecture, we
are going to elaborate more on the shared memory paradigm. So the shared memory as
the word says, we are sharing the address space. So a processor has a set of addresses,
most of them are private to the processor and the others can be made as a shared
variables.

So here the communication between the threads or the processes occurs with help of the
memory and when you say memory, it means we are accessing the memory using load
and store instructions. This is not a new idea. This has been existing since 1960s from
the time of the mainframe computers. The processes as I said have shared and private
data items. So we will see how can a process share its address with other processes.

So suppose I say that this is one of my process, the process normally has data,
instructions, instruction data that is the code. So instruction means the code and among
the data, you can have some private data variables and some shared data variables.
Okay. And then there is the stack segment. So these are the various types of segments a
process can have. And among the data segments, suppose this is my data segment, we
can say that part of this data is shared and part of it is private.

So this shared portion of the data has to be accessible to another process. So if I say this
is my process P1 and I have another process P2 to which I want this shared data to be
accessible. So this P2 should be able to come and read this and vice versa. It should be



also able to read as well as write to this shared location. When P2 has to read write to a
shared address space of another process, suppose the address range here is from 100 to
200 in P1's address space. Right.
So what are these addresses with respect to P1? They are the virtual addresses of that

process. Right. So these are virtual addresses. The P2 wants to access those virtual
addresses. We need a translator which will do this work for us and effectively to be able
to access that it should also have a similar shared address space in its process state.
Right. So in the address space of P2, I should also have the shared region mapped.

So we need to map this shared region into P2's address space also. And probably the
addresses that is the virtual addresses could be different for P2. But overall that is the
same memory. So this shaded region which is in the virtual address space of both P1 and
P2 is actually mapping to the same physical region in the main memory. So if this is my
main memory, then the shared region is nothing but a set of physical addresses.

So this is some physical address in the memory which is equal to the shared address
range of P1 and also shared address range of P2. Okay. So this is how an address space
can be shared. Okay. So this picture shows the same thing. We have process P1 and P2.
The orange one is the private address space which has the other private variables and the
green one is the shared.

So both of these green have may or may not have different virtual addresses between P1
and P2 or Pi and Pj, but they map to the same locations in the main memory. See, this is
the same physical address to which these two green addresses map, this one and this one.
So if I say address range A1 and address range A2 map to the same locations here. And
this blue is the data item which is being shared. So here Pj, process j is going to write to
that data item and process Pi is going to read.

So there is a load here and a store there. So this green address space is essentially
shared by several processes in a shared address space. Okay. So that is how the mapping
of addresses is. Okay. So a write to a shared address by one is visible to the reads of
others because we are going to write to the same physical location which may be mapped
to different virtual addresses across the different processes. Okay. So the communication
architecture, what is there? These processes could be on different physical machines.

We need a communication medium through which we can read and write this data items.
So using conventional load and stores. And when we access a same location by two
different processes, you need to make sure that there is no race condition, there are no
clashes when one race the other has to wait and vice versa. So we need all these read
and write operations to be atomic. So atomic operations also need to be handled using



synchronization. Okay.

So what we need? We need conventional load store ISA and synchronization methods
to be able to implement a shared address space. Moving on. Right. So to generalize the
idea, this is our popular generic parallel architecture, where I have depicted three nodes.
You can have multiple nodes that are disconnected to a global interconnect. Each node
has got a processor or a cache, memory, a network interface through which it connects to
the internet, sorry, interconnect. Okay.

So when I need to have a shared address space implemented in this, we can have certain
pages mapped to this location. For example, here I am saying the Node 0 is going to
store the addresses 0 to Node 0. Then the next N pages will be kept in the next𝑁 − 1 
node. So here I am going to store the first N pages, page 0 to page or you can say 𝑁 − 1
address 0 to address . Essentially, I am evenly distributing the pages or addresses𝑁 − 1
across these different nodes.

And if this process P wants to access the page, 2N, it has a read on page 2N or a write
on page 2N, what should it do? It should be able to traverse from here through the
network interface and then go over the interconnect and then reach this node. Right. So
this is where the page 2N is residing. So this is how we will access. However, it should
be noted, that if this page is a shared page, it can be in any node. But if it is a private
page for the first node, it is desirable that this page be mapped to its local memory bank
or this local M.

So I am calling this local because it is closer. Because this is closer to P, this I am calling
a local memory node. And if this access is for a private data item, it is good that it
resides on the same node as the compute node. Okay. So in this system, how do we
increase throughput? Alright. So to increase the throughput, we need to increase the
interconnect. We need to increase the memory capacity, the I/O capacity by increasing
more I/O controllers and I/O devices.

Memory capacity is very straightforward, add more memory modules to the
interconnect. And what happens with this? You are increasing the capacity, that is more
storage is available. But can I access this more storage at the same speed that I was able
to access earlier? So that translates to do I provide the same amount of bandwidth when I
add more memory modules? Similarly, to increase the processing speed of the complete
system, I can add more nodes that is add more processors, which are able to work more
faster. So faster and more number of processors will increase the processing speed. So
the point to check here is adding memory capacity, is it giving me overall increased
bandwidth? Right. So if you increase the memory capacity, is your available bandwidth



increasing? So we need to check this.

I/O definitely all right, but if you increase the processing speed, with the processing
speed, is the throughput increasing? So if you increase the processing speed, am I able to
increase the throughput? So for achieving this goal, overall, memory accesses is the main
thing in any process because that is the most latency consuming task. If I am able to
access it in a sequential manner, I access memory in a sequential manner, definitely there
is going to be contention. One process at a time goes to the bank, reads and comes out.
So sequential access will be slower. To make it faster, we can have a multi banked
memory and also use address interleaving to make it little faster.

So multi banked and interleaved addresses will make the memory access fast. Okay. So
our target is to achieve this. And in whole story so far, the interconnect is gaining more
and more importance. Now why? So we said I want more memory banks, we will
interleave the data across these banks so that we can parallelly access the data. Now
accessing this data is possible if I am able to visit the multiple banks and that too
together.

I want to access bank 1, 2, 3 and 4 because my 4 variables are in these 4 banks. Okay.
So am I able to access it faster? Is it sequential? Is it parallel? Do I have so much
bandwidth to go to all the 4 banks at the same time or as fast as possible? So this all
depends on the system organization and how the interconnect is designed. Okay. So
goodness of the interconnect is decided by the two matrix. One is the available
bandwidth, and the system throughput. The bandwidth of an interconnect is good
provided or rather the memory access bandwidth I would say which is same as the
interconnect bandwidth available to a processor.

This is good if I have a direct connection between the processor and the memory
because there is no disturbance. Whatever is the amount of physical bandwidth available
that complete bandwidth is available to this connection. So adequate bandwidth is the
first matrix. The second is better system throughput. Even if I have given individual one
to one links between the processor and the memory, how much parallelism is available?
Can multiple such requests or such connections be established in my interconnect? So
this will give you a better throughput.

That is first thing is available bandwidth. Is it more? And to get better system
throughput, is it possible that several nodes can access the memory module, so different
memory modules in parallel? So if I am able to do this, then the interconnect
performance will be good. And all this is possible only if I have a good interconnect.
Okay. So these are three basic types of interconnects. There are more specific versions



which we will see later.

So today we are just going to see these three. The first one is the popular bus. Then we
have a crossbar and then a multistage. So we will see them one by one. Okay. So the first
one is a crossbar interconnect.

As the word says crossbar, this will establish a cross. So if I have something like this, I
will just draw a rough sketch to understand how the design is. So this is, this center part
is the crossbar and if A, I will just note something. I will just write something here, A, B,
C, D. So if B wants to communicate with C, then I am going to establish this link here.
Okay.

So this is how I will establish a B to C link. If A wants to talk to C, then we need to
break this link and then establish the green link. But remember the red link cannot exist
when the green link exists and vice versa. Okay. So a crossbar essentially helps to
connect between different nodes. And if you are adding another processor, so let me
generalize it to a processor design.

Here we have, suppose I have two memory modules and four processor nodes. Okay.
So all of them need to connect to the memory. So this is the crossbar which I have drawn
there, that figure. So each of this is that circle and if processor P1 wants to connect to
M1, you know what type of a link you need to establish. You need to establish this link
for a P1 to M1 connection and then P2 to M2 and so on. Okay.

So suppose here a third memory module gets added or a fifth processor gets added, you
need to extend this network or this is called the switch. So you need to extend these
switches to increase the size of the connections or size of the network. So adding a
processor, you need to extend the switches or add more switches to the crossbar.
Remaining structure remains same. But as you will realize that this is not so scalable
beyond some number of cores. Alright.

So this only works for small number of cores. And so what to do? So what to do if this
is not scalable? So what is the solution for this? So the solution for this is to go for a
multistage network. We will take a quick look at the crossbar in this figure, the same
thing which I had drawn on the previous slide. You have two memory modules and
these are the crossbar switches connecting each of them. Okay. So next is the multistage
network. Multistage is not like a grid structure of a crossbar, but you have multiple levels
of connection.

In a crossbar, there is a single level connection, processor directly to the memory



because I fused this switch. Whereas here, if this processor 1 wants to connect to
memory module 2, there is no direct connection, it has to go through these intermediate
points. So first thing it comes here, then this switch has to identify whether to go in this
direction or to go in this direction. So this decision has to be made, then it decides to
move here. Again, here it has to decide where to go and then go here. Right.

So there are multiple stages through which P1 will connect through the first switch,
then another switch and then it will reach M2. Okay. So there are multiple stages to
reach. But the good point in a multistage network is we can establish connections across
all memory modules. Here, this is, I will keep comparing with crossbar. So once P2
connects to M1, P2 cannot connect to M2 unless M2 is free.

Suppose this connection is in use. Okay. So P3 is connected to M2 and P2 is connected
to M1. So when these two connections are being used, so P2 cannot use this switch
because the above switch is in use. So there is a limitation that how many memory
modules a processor can use. Whereas in a multistage network, P1 and P2, both of them
can access multiple memories at the same time because there are multiple paths
connecting each memory module. Okay. Because we have multiple paths available, there
is more generalization of the connection.

We can use most of the memory modules in parallel so that there is more data sharing
possible and so on. So with this all good points, what is the disadvantage do you think
with the multistage? Okay. So you can think for yourself, pause the video and check
whether you can understand or derive a disadvantage of this network. Okay. So moving
on, the disadvantage if you have thought it correctly is that the latency increases because
your number of hops are going to increase. You are going to go through intermediate
switches to reach to the memory. And apart from that, because we are able to access
multiple memory modules or multiple processors can now access multiple memory
modules, the interconnect is being shared across these connections and hence the
bandwidth available to every connection reduces.

So we have decreased bandwidth because of the parallel access is possible. We have of
course seen the good points of the multistage that adding, so adding more nodes and
processors is easy because it is not as limited as a crossbar. So addition or extending the
network or scalability is good in this. Then the second one was a processor can access
the memory directly because there are multiple connections available. And because of
this property, we can have sharing of data structures and also the I/O events can be very
easily handled because if you see here. Okay. every processor is able to access different
locations of the memory and different memories in parallel.



It has multiple paths and allows more sharing of data and more parallel processing. So
the sharing improves in this, but the latency disadvantage is there and you have little
poor bandwidth. So that was crossbar and multistage. The third interconnect is the bus
type. So when we could pack the processor, the cache, the memory management unit
into a small chip or and onto a board, multiple such boards could be connected on a
small bus.

So this was a central memory bus to which these modules were connected. So the
advantage with this was every processor can access every memory module because there
is a single path between the processors and the memory. So if I go to this figure, yeah,
here. Okay, so that's a shared one single road is there and everybody can access this road.
So this processor can access this memory, can access this memory.

So there is a possibility of being able to access every memory module and that facility
is available to every processor. So you can imagine this good point comes also with the
disadvantage that if there are more processors, your share or every processor's share of
the bus will go down. Also there is a limit on how many processors or memory modules
can you add to this connection because the average bandwidth available to every
connection will reduce. Okay. So what are the good points of the bus? The bus allows
access to any processor from any memory location. Any processor can access any
memory location directly without establishing a connection, without making the crossbar
connect and so on.

No multi-stages, nothing. A direct connection from the processor to the memory. And
the other big advantage is that the access latency between every memory module is same.
No matter what processor, it takes the same amount of time for every processor to access
any memory module and hence the access is predictable. You know how much time it's
going to access and that is helpful during programming. This system is called an SMP
that is symmetric multi-processing system.

So bus gives you a symmetric multi-processor based system. The limiting factors as
you understood are the aggregate bandwidth decreases because the available share of the
bandwidth to every processor and the module changes or reduces if you add more
processors and more memory. There is a small solution to this when you reduce the
aggregate memory bandwidth. Of course the caches do come to help here because they
try to reduce the gap of memory access latency. Suppose you go once to the memory,
bring lots of data, so you don't need the bandwidth for a while because you are using the
cached data. And problem with this is when you bring cached data, you have to manage
the cache consistency and data coherence whatever.



So cache consistency, coherence maintenance becomes a new problem to handle if we
try to avoid the aggregate bandwidth issue. Okay. So with this now let us see how can I
build a scalable memory machine. Okay. So we have seen interconnects and every
interconnect had some pros and cons. We use the bus but bus was not scalable beyond
some number of nodes because it gave fixed aggregate bandwidth. That is the
bandwidth was fixed and overall it reduced if you add more number of cores.

Then we looked at crossbar, it does not scale because its cost increases with the square
of the number of nodes. Right. So the function is square if you add the more nodes or
more memory modules. Then how do I build a scalable interconnect which gives me
adequate sorry adequate memory bandwidth and at the same time has lesser cost. So I
want a cost effective network with good enough bandwidth. When I do this at the same
time see that the latency does not increase so much because if you go down on the cost
the latency might increase.

So good bandwidth, low cost, improved latency. Memory access is the activity which
any program does lot of time. So if you are spending most of the time memory accesses
and if each access is slow the process is going to stall. So there is no point in having
bigger and faster processors included if they have to wait for the memory access latency.
Okay. So my target is best bandwidth, less cost, less access latency to make sure that the
processors do not stall because if the processors stall we will have a poor utilization of
our parallel architecture. Okay. So how do I build scalable parallel machines? So what
are the options available? So we look at two options, one is UMA architecture and one is
the NUMA architecture.

The first option is UMA which is uniform memory access. So here we use a scalable
memory system and make sure that every processor is able to access every memory
module using the same amount of latency. So essentially even if the memory is banked
memory we treat it as a centralized memory and every processor takes the same amount
of time hence it is called a dancehall type of architecture because the round trip latency
for every processor to memory access and back is the same. Okay. Now when we do this
the large bandwidth is required for every processor to access the memory. So if you
have a good bandwidth then the UMA architecture is good. The other alternative or wait
a minute I will just show you the design of the UMA.

So this is the uniform memory access architecture where the processors are on one side
and the memory is common. So this is the centralized, so you have centralized memory
and each processor can go and access that memory. But the latency of access is same
hence uniform memory access. The second one is the opposite of this non-uniform
memory access or NUMA architecture. Now this non-uniform word what does it tell that



the memory access for every processor or every location is different.

So we cannot say that it is going to take 5 or 50 milliseconds to access the memory
every time. It may be faster, it may be slower. Now when can it be fast or slow? Given
that the memory is closer to the processor I can access it fast, if it is far I can access it
slow. So we move out from the centralized memory concept and move to a more
distributed memory concept in this case. Okay. Look at the picture here along with
every processor which was the processor and the local cache similar to this one but we
no longer have the central memory but there is a memory bank associated with each
node.

And I will call this a local memory however it is shared. Though it is local that is local
essentially says it is closer to the processor or is part of that node itself. So we have a
processor, a shared cache and a piece of memory attached with the node and we have
such several nodes associated on the or attached to the interconnect. If you will rightly
observe that accesses to this node is fast and access to a node across the interconnect, so
suppose this one goes out here and then here and then comes here. Right. So this is a far
of memory and that is slow. So accesses to local nodes are faster, accesses to remote
nodes are slow hence it is called a non-uniform memory access.

So local is fast, remote is slow. You would want that most of the private data items that
are not shared by other processes, they better be in the local memory node so that you
can access them quickly you do not need to go on the interconnect. So most of the
system designs make sure that the private data items get mapped to your local memory
module. And the shared data items could be anywhere, it could be if you are lucky it may
be in your local node otherwise it could be in a remote node. So the shared data items
are possibly in local or remote nodes but the private are mostly in the local node.

So what does this give you? The bandwidth requirement of the interconnect goes down.
Why? Because most of the accesses are served by your local node and hence you hardly
go out. So here, if most of your accesses happen here itself you would not go out on the
interconnect to do and hence this interconnect is getting more free time to serve others.
Hence the aggregate memory bandwidth or the interconnect bandwidth is better. So this
is how we can have scalable networks.

One is a uniform if you want uniform memory access assume a centralized memory. If
you are okay or best one then non-uniform memory access is a better choice. So this
shared memory paradigm is effective if I have a faster memory access that is the latency
is low and good bandwidth of data transfer. Memory hierarchy is definitely helping us
here because memory hierarchy philosophy says that we should bring the data we want



to use closer to the compute node. For example in a uniprocessor system it comes from
the disk to the main memory to the cache and then stays in the first level caches or any
cache on the chip so that the accesses are faster. So essentially I am bringing the data
closer to the compute and in a shared memory system the bigger system which we are
targeting the objective here also is that the data should move closer to the processor and
for bringing this we have to move the data that is migrate the data from remote memory
to local memory and at times if it is a shared data you might end up replicating the data
because the remote node also is wanting to use that data item.

So replication and migration across a general purpose interconnect is the requirement
for an effective shared memory architecture but this comes with challenges and that we
will see how to handle them slowly. Okay. So overall for scalable system you need a
better hardware interconnect and for cases of this that is I have replicated the data items I
need mechanisms for maintaining coherence consistency of the shared data. So these
two aspects we need to handle if I want a very effective shared memory system. Okay.
So to summarize we have seen that communication and cooperation, communication that
is sending and receiving information or sharing data across processes and cooperating
with every with each other is the main foundation for doing this and for communication
and cooperation in a shared memory architecture we use read and write to share
variables.

Each process has its own virtual address space. Some portion of this virtual address
space is shared across all the processes probably the addresses could be different but they
share and point to the same physical location. Then data is transferred between the
processes at the level of bytes, words or even cache blocks. So the amount of data, the
granularity of transfer depends on the type of programs in the system. Then your
addresses could be either mapped to local nodes or they could be mapped to remote
nodes and address translation which is helping us to identify the virtual address in my
process with the physical address of the real shared memory is managed by the address
translation unit and this unit also makes sure that a process does not access private
variables of the other process. Okay. So the security against the data items or the process
address space is maintained by the address translation unit. Okay.

So overall a system can have multiple processors. They are may, they may or may not
have a shared cache. Eventually they go out and access a memory that memory could be
centralized memory in a uniform memory access that is a UMA architecture or it could
be a distributed memory making it a NUMA architecture. Thank you.


