
Parallel Computer Architecture
Prof. Hemangee K. Kapoor

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Week - 08
Lecture - 44

Lec 44: Directory Protocol optimisations

Hello everyone. We are doing module 5 on Scalable Shared Memory Systems. This is
lecture number 5, where we are going to discuss Directory Protocol Optimizations.
Optimization about what? About performance. So, let us discuss performance to begin
with. Right.

So, we are discussing directory coherence or overall a set of network transactions is the
topic and if I want to improve performance of this, I need to consider various aspects of
a network transaction where we can address issues to improve the performance. Alright.
So, network transactions in a normal message passing based interface would go through,
one computer generates a message which goes through the network to the other
computer. So, that is done at the software level.

But when I am talking of a shared memory system where implicit messages get
generated on behalf of the program, they are automatically generated by the protocol and
not only that, but not by the processor, but by the communication assist or the cache
controllers. So, they are going to generate these network transactions. These are very
tiny transactions, that is, you send a request for example, a bus read request goes and
response of data comes back. So, very tiny transactions of small amount of data and at
times you get a data response back. Right.

So, the size of, the number of transactions may be more, but the size of every
transaction is small. And when these transactions travel through the network, they go
through the processor , that is the requesting processor has a read or write miss, it goes to
its cache, then moves out from the cache controller to the communication assist, then
outside to the network. Right. So, that is the path. Once it goes on the network, it
reaches the destination node through that, either it reaches to the required processor, if
required, but most of the time the destination processor may not be involved because if
you want the data block, the cache controller or the communication assist at the
destination can itself do the job for us.

Right. So, and we also need to take care that the amount of time it spends on the



network, that is the network latency, the transfer latency should be optimized. So, these
are the parameters we should be considering when we consider improving the
performance of the system. All right. So, we are going to address this using three types
of or handle this using three issues which are we will try to optimize the protocol.

We will see if can we arrange the machine organization which will be more efficient.
Every organization is good, but which is a better one and can I have specialized designs
for the communication assist or the parameters. Okay. So, we are going to see more of
details of protocol optimization and quickly a brief review of the other two topics.

Okay. So, performance we are saying that cache coherence protocols are going to
generate network messages atomically and sorry automatically and they are having a
small size. Where are the overheads into the system? The overheads are with the
requesting processor, the network delay and the communication assist at the endpoints.
So, these endpoints, the processor at these endpoints may not be involved because the
CA that is the communication assist at the endpoint would do the job for us. So, we need
to concentrate on how do I improve the network delay and how can I reduce the
involvement of the CA or how to make the CA more faster. Right. So, for this we are
going to look at optimizing the protocol, some machine organizations and specializing
the communication parameters. Okay.

Okay. So, protocol optimizations I am going to do in detail in the next few slides. We
look at the point number 2 because we are going to do a high level discussion about the
other two points. The second performance optimization was high level machine
organization. So, machine, you have the processor, the cache, the directory, the memory
and the network. So, these are the components and when I want to implement a directory
protocol or any coherence protocol, we need to be aware that the request transfers from
one node to the other through the network and having a very large system of
multiprocessor nodes.

We could have a hierarchy of nodes connected, if I have a hierarchical protocol or I will
have a network which has multiple processors, another one, another one which consumes
this whole thing and so on. So, there could be hierarchical arrangement of the processors
and if I have more and more depth in my hierarchy, it is going to take more time. That is
my protocol is going to go through several levels in this hierarchy and incur more
latency. So, to avoid this, we normally would say that if I have a two level hierarchy that
would perform much better. So, two level hierarchy is that you have a global network
and multiprocessor nodes are connected to this network. So, we have a global network
and I have nodes connected to this and each of these nodes is a multiprocessor node.



So, there are n processors in every node. Within the node you can have a snooping or a
directory protocol. You may say that well snooping is going to take time within this node
also, but still it is popular and if you have a commodity server available which supports
snooping, you might want to just plug it into your system and use it. Hence snooping is
still being used, right. So, for a machine organization we would prefer a two level
hierarchy, although other options are also viable.

The third one hardware specializations to improve the communication parameters. So,
here the communication assist which we discuss about, we want to make sure that the
assist is involved for a shorter amount of time, because the assist should do the work
very quickly. So, how do I improve the communication assist or what is its role that I can
address. So, this CA, when it gets a request from the network about a read write or any
transaction, it has to look up its directory and its associated cache. So, this has to be
done in a quicker way and it should be able to do it on its own.

So, essentially the memory, the cache controller or any memory related modules should
be tightly integrated with the communication assist. They are definitely integrated with
the processor hierarchy, but we also want the CA to be closely associated with these
modules, that is it should have the power and control of accessing them more freely.
Okay. So, there has to be a tighter integration. Then we should also see, that if the CA is
busy in serving a transaction and suppose newer transactions come, the CA module
should be capable of serving the new transactions in parallel to the pending transactions.
Right. So, it again has to be itself a parallel process that it is serving block number A, in
the meanwhile request for block B comes it should again be able to serve that request.
Okay.

Then the directory to which it is going to look up, it should be fast and to make it fast,
we can say that store the directory in a SRAM device rather than a DRAM memory. So,
we can use SRAM for the directory. That is one option. Another thing is we had long ago
discussed that, if the memory knew that the particular cache block is being cached by
others or not, the memory can maintain a bit about it. Right. So, we can use this idea
here and not disturb the memory module as such, but maintain another lookup table in
SRAM with every address and say that these particular addresses, whether they are
cached or not, whether they are dirty or not. So, that the communication assist can
quickly see through this and decide the further actions.

So, overall we want to see that the communication assist is able to do things quickly and
parallelly for multiple transactions. If your assist is going to take more time or the
design is more complex maybe go for a pipelined design, so that you can overlap actions.
Apart from using an SRAM directory and lookup table for SRAM. Okay. So, moving on



to protocol optimizations. So, protocol optimization's goal is that I should reduce the
number of network transactions and the number of transactions on the critical path, on
number 1 and number 2. By reducing the number of network transactions what are we
achieving? The overall bandwidth demand reduces because I am sending lesser
transactions, so the bus is available for other transactions to take place and so overall
bandwidth demand is reduced and you get more utilization of the same resources.

Similarly, the communication assist will also, involvement will also reduce because if
the number of transactions is less, we will have more time that the CA spends on more
number of transactions than on a single transaction. The second objective is reducing the
number of transactions in the critical path of the processor, that is once you start one
transaction several messages will pass from the sending processor through the network
to the receiving processor and then back. So, we want to reduce this number, so that the
processor starts processing as early as possible and this is possible if I can kind of divide
the transaction into small pieces and make sure that I can overlap the complete activity
instead of doing it more sequentially. So, these two we can achieve independently and it
also depends or our approaches will depend on the way the directory is organized. That
is how, how am I storing the directory information. If I am storing the directory
information using memory, that is a memory based bit vector I can send many things in
parallel.

For example, if you are invalidating the cache blocks from a bit vector you can simply
send parallel messages to all these sharers. These can happen in parallel whereas this is
not possible in a cache based system. So, but in a cache based systems, you can do
something else to improve the performance. So, in both cases directly or indirectly we
have options to improve the protocol. Okay. So, first we will look at optimizations in a
memory based system and later optimization in a cache based system.

So, this is an overview slide one point reference for you, but we will do these three
diagrams one by one. Protocol enhancements for latency. Here, I am going to discuss
communication methods of three types, strict request response, number two is
intervention forwarding and third is reply forwarding. While doing this, I am going to
use the terminology, L for a local node, H for a home node and R for a remote node or a
dirty node. I hope you can recollect, we had discussed these terminologies in a previous
lecture.

We are going to do these one by one. So, strict request response. Here, as the word says
strict, it is going to be when you send a request you are guaranteed to get a response and
you can do nothing else in the middle. So, when you send a request you expect a
response. So, I am going to take a scenario, here, that I have a local node which is also



the requester node, a home node and a remote node. We have three nodes to consider.
Whenever there is a cache miss, the local node will then or the directory controller will
send request to the home node for the block.

So, the first action is a request. As it is a strict request response you are expecting a
response back. So, what should the home do now. Because home knows that, I am just
taking a scenario that the block is probably dirty in the remote node and home has to
somehow make sure that L gets the data from R. So, either home gets the data or home
tells L to get the data. Because I am following a strict request response, in response to 1,
H has to send a response. So, 1 was a request, so 2 is a response and what do you think
will go in this response. Because this one transaction has finished and now L should be
able to go to R to fetch the data. So, essentially in this response, I am going to forward
the identity of R.

So, identity of R will be sent by the home to the requester because it will use this
information and then go to R as transaction number 3. So, third is another request. So,
this request says that L says to R that, give me the data block and R gives the data block
to L. So, as part of this, 4 is a response. So, this response carries the data because the
data block is transferred from R to L. Right.

So, now you would wonder that the new data, the fresh value is moving from R to L, but
what about the home node. Suppose L had asked for writing then it does not matter that
home still can hold the stale copy, but if L had asked for reading home needs to be
updated and who would update home. Very likely here, it is the responsibility of R. So, R
has to update home as part of the fourth transaction. So, I can divide this as 4a and 4b
and say that 4b, it revises the content of the local node. Okay. So, this is how a strict
request response is implemented. You send a request, you get a response.

So, 1 and 2 and then 3 derives into 4. So, if you look at this diagram you will see or
rather I would say you pause the video and count the number of network transactions,
count the number of transactions in the critical path and then decide whether this is an
optimal method of doing it. Here I have 4 network transactions in the critical path
because I need to do 1, which results into 2, that results into 3, and then a 4a. Because
once this complete thing is over, the processor at L can start processing. The 4b
transaction can happen in parallel to 4a, because the processor at L need not wait for 4b
to finish because it is going to happen in background. Overall we have 5 network
transactions, out of which 4 are in the critical path.

Can we improve this? Okay. So, this can be improved by using the next method of
intervention forwarding. Okay. Same scenario we have L, we have H and we have R, L



sends a request to H. Now it is not strict request response and we are doing this to reduce
the number of transactions. Here H says that let me go to R and fetch the data. So H
goes to R and this message is called an intervention.

Why intervention? It is also kind of a request but H is generating this request because
of another request from L. So, because that first transaction happened, this is a reaction
to the first transaction , hence it is called an intervention. So H sends an intervention to
R. What should R do? Actually here in 2 it asks R for the data. So you get a response
from R along with the data and then H forwards that data to L. Okay.

So here I have 1 transaction 2, 3 and 4. So only after all these are over, can the
processor move forward. Hence in the critical path, I still have 4 transactions. And how
many total transactions in the system? Even then we have 4 total transactions. If we
compare it with the previous one, here, we had 5 total transactions out of which 4 were
in the critical path. We have improved a little by making the 5 to 4.

So we have 4 transactions as the total and out of that again still these 4 remain in the
critical path. Okay. So this concept of intervention is, it a request sent as a reaction to
another request and this request is directed to a cache and not to the memory. Because L
sends a request to H which is a memory whereas H sends a request to R which is to be
addressed by the memory. By the cache at R. Alright, so we have improved from 5 down
to 4. Critical path is still 4. Can we improve further?

So let us see the third method called reply forwarding. So reply forwarding, again I will
take those 3 nodes, a request. Now, H is going to send an intervention because it has to
go to R and this method had worked for us, so I will still use this. I will just use a
shortcut word inter here.

So 2 sends an intervention to R. Okay. So how do I improve from the previous one? I
will go back to the previous slide. Here you can see, that R sent an answer or response to
H and then H forwarded that response to L. How could have we done better than this?
We could have done better, if R was able to give the data to H and L both in parallel . So
that will reduce the number of transactions in the critical path because then we can
overlap some transactions. Okay. So here, let us try that. I will now make R send a
response in parallel to both of them. So I will make this a 3A and a 3B, so this is called a
response because it goes to L in response to that request number 1 and 3A, I will say it is
a revised message because it is only going to go and update the data.

So how many transactions in the critical path? Pause the video and calculate. So we
have 1, then you have 2 and 3B. Right. So you have 3 transactions in the critical path,



total network transactions is still 4 because 3A and 3B count as 2 transmissions. So total
transactions is still 4 but in the critical path we have reduced it from 4 to 3. So this is
popularly called a 3 message miss type of a communication, the reply forwarding.

Okay. So the question is 1, 2, 3 which one to use? The one strict request response was
the slowest one, so we do not want to use it. So how about 2 and 3? 2 was intervention
forwarding, 3 was reply forwarding, they are not strict request response. Now when we
are doing away with the strictness, we have problems related to deadlock. Because if I
am sending a request and getting back a response, there is less chance of waiting . But if I
am sending a request, that is sending another request, probably another request and
eventually we will get. So the delay increases, the number of modules involved in this
transaction increases, which leads to or which complicates the deadlock avoidance. So
these intervention and reply forwarding are good, but they may complicate deadlock
avoidance.

Intervention I would say is an intermediate design because it is good at latency and
traffic but still the critical path has more transactions than the reply forwarding. Another
disadvantage is that you have several such transactions waiting at the home. Okay, I will
just draw it here for a quick reference. So this was the intervention and so when H sends
an intervention to R, it could be sending such interventions to multiple R's for multiple
other requests in parallel. So this H ends up remembering that I have sent these many
interventions and it has to wait for all of them to respond to reply back to the requesters.

So there could be several outstanding interventions at the home and at max it has to
keep track of K * P where there are P nodes in the system and every node could send K
requests. So you need that much buffer space and management of these K outstanding
requests. Whereas this problem is not there in reply forwarding. So this is about, so the
marked zone is about intervention forwarding and in reply forwarding what happens?
The H need not remember but R is going to send the answers directly to L. So H need
not remember that it has to forward, because the role of H finishes when the revised
message arrives.

Hence it is much efficient and most of the systems use reply forwarding. Of course we
need to take care of the deadlock issues. Right. So that was memory based optimization.
Now cache based. Again in this, what was cache based? You had a linked list or a
distributed linked list across every node for all the sharers.

Now when I send invalidation message for a particular block, we first go to the directory
that is the home node. From the home node you will know the identity of the head node
that is the first sharer. You have to go invalidate that. From that first sharer you will get



identity of the next sharer and so on. So you have to traverse to this linked list
invalidating every block in the system of sharers and then return back and that is bring
the acknowledgments back home.

So this is the overall protocol. How will I optimize it? Even here, we are going to use
those three methods, strict request response, intervention forwarding and reply
forwarding. So let us do three of them one by one. Okay. So here there is a write request
because we can only optimize the worst case that is the invalidations were passing
through the system. Okay. So let us do this. Here I am going to say, I will abstract the
other requests out because I am assuming that I start from the H node just to simplify the
diagram.

So scenario is processor has sent a write request, that goes to the local node that is L. L
sends a request to H and H has a pointer to the first sharer. So H is pointing to sharer S1,
S1 is pointing to S2, S2 is pointing to S3. I have taken this much example.

So there is a linked list from H to S1 to S2 to S3. It is a write request, so I have to send
invalidations. So H is going to send first message invalidate S1. Because there are
multiple sharers, the block is clean, hence we do not want a data response back, we
simply need an acknowledgement. So it sends invalidation to S1.

We are dealing in the scenario of strict request response. Okay. So this is my protocol.
Under this protocol, for every request a response has to be generated. So 2 is going to be
a acknowledgement from S1 to H. If we do this the link between S1 and S2 would be not
known to H.

So H will not know how to invalidate S2. So to overcome this, when S1 sends an
acknowledgement along with that, it has to send the identity of S2 to H, because the next
transaction H is going to send an invalidation to S2. S2 is going to send a response which
is ACK in. Okay. So the number this should be 3 and this should be 4. 4 is the ACK,
along with that you will get identity of S3, hence H is going to send the next message to
S3 in a message number 5 of invalidation.

S3 sends a response to H of acknowledgement. 6 is ACK. With this no identity comes,
that is you send a null, so that H knows that all sharers are invalidated. Okay. So in this
example calculate the total number of network transactions and those in the critical path.
So you can pause the video and solve this. So total transactions in the system is 6 in my
case.

Here it is 6 which is equal to twice the number of sharers. And how many are there in



the critical path? I would say the same number. So which is also to the total number of
transactions in the critical path. Okay. So a neater diagram is given here. Next is
intervention forwarding then we will also see reply forwarding. Okay. Same number of
sharers I will do them, one by one below the other, these two examples we have H S1,
S2, S3.

H sends an invalidation to S1. Okay. We want to do intervention and not reply
immediately. So intervention is S1 should do something on behalf of H. So S1 sends
something to S2 as an intervention. So it sends one message here.

In addition to this, S1 has to tell H that it has invalidated itself. So I am going to have
two things in parallel. Here I will send the acknowledgement. S1 sends
acknowledgement to H that it has invalidated the block.

S1 sends a request to S2 of invalidation. This 2a is the intervention. In response to 2a,
S2 is going to do two actions, one to S3, another back to H. This is going to be 3a, 3b.
3b is an acknowledgement and 3a is an invalidation request from S2 to S3. At the end,
S3 has no more sharers, that is the linked list stops here.

Hence it simply sends a acknowledgement 4. Alright, so total number of network
transactions and those in the critical path. How many are there? Total transactions is, for
me 1, 2, 3, 4, 5, 6 and those in the critical path, you have 1, then 2a, then 3a and then 4.
The 2b and the 3b, they can finish in the background by the time the 3a and 4 happen.
Okay. So in the critical path I have 4 and in total I have 6. So what is the formula? Here
it is 2 times the number of sharers and critical path is the total number of sharers plus 1,
if S is the number of sharers. Okay.

So that was intervention forwarding. Now we will do reply forwarding. H, S1, S2, S3.
H sends an invalidation here. So overall, look at the red diagram and let us build a better
blue diagram at the bottom. What can we optimize? When a request goes from H to S1,
we were saying, S1 does the job on behalf of H by doing the 2a transaction and also
replies to H. So we could say in a way that this 2b and this 3b they happened in the
background, they were not in the critical path, but they were still consuming the
bandwidth, because it was contributing to the total number of transactions. Can I avoid
the 2b and the 3b? I would say yes, because if S1 has forwarded it to S2, it is, the
protocol guarantees that it will delete the block from S1.

So the 2b acknowledgement, I would say it would be a redundant action, if we can
somehow guarantee that, at the end H knows that everybody has deleted. So let me not
do 2b and see what I can do in future. So S1 simply says okay, I will invalidate. So it



guarantees that it invalidates its block and then just forwards that request to S2 , because
S1 has information of S2.

It does the same thing here. Then S3 has got no more sharers after that. So S3 has to
send an acknowledgement. Now here is the trick that S3 would now directly send an
acknowledgement to the home node as action number 4 and when this ACK comes, the
protocol design says that H understands everybody in the system or all sharers are
invalidated. Okay. So with this I have avoided the 2b and the 3b. So in the critical path
how many do I have? I still have 4. Right.

But the total number of transactions is also 4. So the total is 4 and in the critical path is
also 4. And what's the formula? It is S plus 1 because you are going to send 1, 2, 3
messages, that is 3 sharers, and final ACK adds to the last one. So S plus 1 is the critical
path. All right. So we have seen optimizations on memory based and cache based
systems on three different varieties of protocols and we conclude that reply forwarding is
the best performing one.

Of course it has problems related to deadlock avoidance or complications which we
need to be careful and handle it ,and we can discuss this when we handle the correctness
aspects. Okay. So with this we stop this lecture. Thank you so much.


