
Parallel Computer Architecture
Prof. Hemangee K. Kapoor

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Week - 05
Lecture - 30

Lec 30: Correctness Requirements

Hello everyone. We are starting with module 4 today and the title of the module is
Snoop-based multiprocessor design. So if you recollect, cache coherence can be
implemented using either snooping or directory based protocols. So we are going to
look into the details of how a snoop-based multiprocessor can be designed as part of this
module 4. This is lecture number 1 in which we are going to look at correctness
requirements. So when we are designing symmetric multiprocessors, there has been large
difference in the performance, cost and scalability of various implementations.

But at the bottom if you see the cache coherence protocols, theoretically they look all
similar. Processors also are same. So what brings out this difference in the performance
and the cost? So it is mainly how we organize all these components and how do they
interact with each other. So the design and implementation and organization of all these
components will finally give result to a good performing system.

The latency and the bandwidth at which I am accessing the memory will depend on how
your processor interacts with the cache, how the cache is designed, then how the cache
interacts with the interconnect, whether it is a bus interconnect or a scalable interconnect
and eventually how is the memory designed. Is it a single banked memory or an
interleaved access memory and so on. So there are many factors which will affect the
final performance of your system and also the end user cost. So when we are
implementing, we need to keep track of three main goals of any implementation. One is
it should be correct, it should be high performing and at minimal extra hardware.

So your overhead should be as less as possible. Right. So if you keep in mind that our
three goals of implementation are correctness, high performance and minimal extra
hardware. All these systems are going to implement the same cache coherence protocol
with some variations, but how are we designing and integrating these components will
affect the final performance cost and scalability of your SMP. So the implementation
goals as we said are correctness, high performance and using minimal extra hardware.
So correctness arises because when all these parallel components are interacting with
each other or if you recollect the cache coherence protocol, we said that when a block is
accessed, I am going to send an invalidation message on the interconnect or update



message on the bus and we assume sitting here that somebody has invalidated. Right.

So we kind of assume everything is atomic, it happens instantly for us, but in real life it
doesn't happen because you sent an invalidation to a node, but that node may be busy
doing some processing or that snoop controller is busy accessing something else and it
might take some time before that invalidation or the update takes place. So this sending
processor, what are the assumptions it is doing? Am I assuming that it is happening
instantaneously? Am I assuming that it will eventually happen? So all these will affect
the correctness of your final implementation. Because at the abstract level everything
happens instantaneously, but in real implementation it takes some amount of time.
Again, high performance. We want the system to be high performing, but right now
when we discussed cache coherent systems, we said that let one transaction happen at a
time, we sent an update and we assumed that the memory will first write that data and
then I can proceed with my next read or write action. But if you have a system
implemented like this, it will be very slow. Because memory as it is going to take more
time and if you are doing one operation at a time, there will be a lot of gaps and many
processors will be stalled for doing that activity. Right.

So we want to do things in parallel. Can we pipeline the accesses to the memory? Can I
have a bank level memory where all the banks can be parallelly accessed? So all these
implementations or ideas if I implement, then it will also have to be guaranteed that they
work correctly. Right. So high performance requirement also puts load on your
correctness aspects of your system. And then again the cache coherence, there is a lot of
interaction between the different caches, the snoop controllers on the bus and the
interconnects. So several components.

If you recollect the FSMs which we discussed during the cache coherence topic, there
were so many FSMs at each node doing their activity, interacting with the interconnect.
So all this is a very complex system and it has to work correctly and at the same time
with good performance. So earlier when out of order processors came into market, it was
known that the correctness and testing of these were very challenging tasks. So these
days, correctness of the cache coherence controllers has also become equally challenging
and equally important. Right. So implementation goals of correctness, high performance
are to be guaranteed because our theoretical understanding of atomic actions is no longer
atomic in the real implementation.

So it is not necessarily atomic at the hardware level. We want to improve performance
by pipelining the memory accesses and keeping several outstanding accesses in parallel.
Right. So if a cache incurs a miss, we send that request to the memory but at the same
time the cache can start servicing other requests. Same thing can happen with the



memory that if the memory is serving a particular request on one bank, we can say that
let the other banks process some other requests in parallel. Right. So we want several
things to be happening in parallel to improve the performance of the system.

When you have such complex interactions between the cache, the memory and the
interconnect, we are going to be concerned about the correctness of our system. So
definitely the recent cache coherence controllers and the modern out of order execution
processors, they both are complex systems and they will have many outstanding memory
requests pending and processors will have many outstanding instructions going on
together and therefore the correctness of this whole system complex controllers is of
utmost importance for us. So what are we going to see in this module? So first thing we
are just going to list and understand the importance of correctness requirements in this
lecture. Then in the next lecture, we are going to look at how a atomic bus, that is system
which works on a bus but the bus is atomic, that is it takes only one transaction at a time
finishes that transaction and then takes the other one. So with such a single transaction
bus and if the system uses single level caches, how can we implement a snoop based
design? We will move one level up and say that I will go for a multi level cache but still
use an atomic bus.

Next is we will again go back to a single level cache but this time we will try a split
transaction bus which means I can have multiple transactions happening on the same bus
in parallel. Okay. Again next level up here is split transaction bus with a multi level
cache. So through these four designs, we are going to see in detail how a snoop based
system can be developed. Okay. So coming back to our goal of this lecture is the
correctness requirements. So in a cache coherent system, to guarantee correctness, we
have to make sure that all the conditions related to coherence and consistency are
maintained.

So what are the conditions to ensure coherence? So if we can recollect the topic on
cache coherence, we said that coherence can be maintained given that whenever a write
is done to a shared item, everybody else should be able to see it and nobody should get
the stale data items. Right. So if there are other copies in the system, either they get
invalidated or they get updated. In the end, all the stale copies need to be found and
either updated or invalidated. So that is what we do in coherence. And while doing this,
we need to guarantee write serialization as well as write propagation. Okay.

So these are the requirements of a coherence correctness system. Then we also have to
guarantee sequential consistency. So sequential consistency, this topic we are going to
see later in a different module. But for the time being, I will simply say that we need to
cater to two main properties for sequential consistency correctness. So for sequential



consistency, we are going to look at or rather understand what is write atomicity and
detecting the completion of write.

So if I can guarantee these two, I will say that my system is sequentially consistent.
And if I want to guarantee coherence, I will say that all the stale copies are identified,
they are either invalidated or they are updated. Finally has the write been serialized and
has the write been propagated. Right. So every time we need to check whether all these
properties listed here are satisfied or not. Okay. So for sequential consistency, we
discussed that we need to prove write atomicity and detecting completion of a write.

So what are these two things? So I will say that a write completes when the write which
is done by one processor is seen by every other processor. Okay. So suppose processor
P1 does a write of value 5 to B. Right. So it does write B equal to 5. And there are other
processors P2, P3 and P4 in the system. So what we are saying is that this effect reaches
every other processor.

This write reaches every other processor before P1 is permitted to do another write or
another read. Suppose it is also wanting to read something. So it can do any other
operation only after everybody else has seen the effect of write B equal to 5. Okay. So
when I say write complete, it says that write should not complete and it should not allow
the next write to occur until all the processors have seen the effect of this write. Right.
So they all should have seen that B has become 5 only then other writes can happen in the
system.

So if we guarantee this, we are guaranteeing sequential consistency. Then the second
condition, so we have done this one. The second condition is write atomicity. So write
atomicity says that after a read operation is issued, the issuing processor waits for that
read to complete and for the write whose value is being returned by the read to complete
before issuing the next operation. Right. So complicated definition, I would request you
pause the video, read through it and try to understand.

Okay, so let us repeat this. What is write atomicity? That is once we issue a read
operation, we get some value. Suppose I did a read of, if I said read C and I got a value
of 2. Okay. So we would say that my read is complete and after this I want to do
something else. I want to do a write to X something. Okay.

So step 1, I did a read. Step 2, I will try to do a write. But I am not permitted to do the
step 2 until, until this value C equal to 2 is effectively seen by every other processor.
That is I got C equal to 2 from some other processors. This is where, this one, this is the
write. So there is a processor which made C equal to 2.



We got the C equal to 2, but we need to wait until everybody else in the system sees C
equal to 2 before we can move to my next instruction. Okay, so that is the meaning of
write atomicity. And if you see it as at an abstract level, what you will understand is, the
processor say P3 which did a write of C equal to 2. If there is a processor P3 which did
this write C equal to 2, this write has atomically happened for everybody.

Atomically means instantaneously. Actually in the real world, it is not happening
instantaneously. But how do I guarantee this logical instantaneous behavior in a real
system? By making sure that whenever anybody accesses C, they all should see C equal
to 2 before they can do the next action. Okay. So this is how we have implemented or
we can say that we have managed to implement write atomicity in a non-atomic real
world system. Okay. So in other words, we have written here in the bullet point that if
the write whose value is being returned has been performed with respect to this
processor, then the processor should wait. Right. It should wait until the write has been
performed with respect to all the processors. Okay.

So if I am getting the value of C equal to 2, then the processor which wrote C equal to
2, that write should be propagated to every other processor before I can say that my C
equal to 2 is complete. Right. So for write atomicity, I will just take this example. Here,
we have written these two values and suppose I am concentrating on this write. Write C
equal to 2 was done by P1 and now P2, P2 reads C.

So it is definitely going to get a 2. But are we saying that this is complete? Can it go to
read B? It cannot. It should not go to read B until it is somehow sure that P3 which is
the other processor in the system has also seen C equal to 2. Okay. So the write of C
equal to 2 in P1 should reach everybody before P2 can proceed to read the next item.
Right. So P2 actually waits for P3 to see C equal to 2 before it can proceed to the next
instruction. So it can only do read B after P3 has seen C equal to 2.

So that is the meaning of write atomicity. Okay. Then the next correctness requirement
is the system should be free from deadlock, livelock and starvation. All of you are very
familiar with this, but let us do a quick recap of what these three terms mean. And apart
from these things, if there are any other error conditions in the system, our system should
be able to control them or get rid of them in a proper manner. Okay. So deadlock, so
deadlock means there are several outstanding operations, that is there is work to do, but I
am not able to do the work.

That is the system activity has ceased, it has stopped, everything is stalled in spite of
the fact that there is work to be done. And why does this happen? This happens because



there are multiple entities in the system. Everybody is incrementally acquiring resources,
like you are standing and you are acquiring books from a library, your friend is also
acquiring books from the library. Both of you have got five books, but you want a book
which your friend is holding and the friend wants a book which you are holding, but
none of you is ready to share the book with each other. You are saying you first give me
the book, then I will give you my book and you only have capacity to hold five books.
Right.

So in this case, even if there is work to do, you still want to read the sixth book, you are
not able to read the sixth book because you are not willing to relinquish one of your
resources and you still want the new resource in your hand. Okay. So when multiple
concurrent entities hold incrementally more resources and they are not going to release
them preemptively. Right. So it is a non-preemptive system, so we cannot progress in
this scenario. So deadlock is outstanding operations and system activity has ceased.
Multiple concurrent activities, entities are there, they are acquiring resources but not
releasing them.

So thus there is a cycle of dependencies. So there is a cyclic dependency between the
system components and we are going to see an example what happens at a traffic light
junction and in a hardware system. Okay. So at a traffic light junction which is seen on
the right hand side, here we have all these cars waiting at the junction. Now these cars
are waiting because how can I say what resource it is acquiring? This orange car has
acquired the lane, if I say this is lane 1. Okay. It has acquired lane 1 and I can say this
has acquired and it is asking for the lane, green lane if I call it. So it is holding the
orange lane and then it is asking for the green lane. So this wants to go straight, so it is
saying I want access to this straight lane and I am currently holding the horizontal lane.

So it cannot go further because the red car which is standing here, it is holding this lane,
if I call this lane 2, it is holding lane 2 and asking for access of this lane. Okay. So it
wants this lane. So there is a circle of dependencies. What is blue car doing? Blue car is
holding this lane and is asking the grey car to move out and the grey car is holding this
lane and wanting the orange car to move out. So there is a cycle among them because
none of the cars is willing to back off and they both are saying I am going to stand here,
you move back and if everybody says this you will get a cycle and hence the system will
be deadlocked.

Why deadlocked? Because the work is not over and we are not progressing. So this can
happen in a traffic light intersection. What happens in a hardware system? So in the case
of hardware when I am discussing two controllers A and B, both of them are holding
certain resources and they want more resources from the other one. So A says that I want



a resource from B and only then I will accept requests from you. Right.

And B says the same thing. B says I want A to give me something, only then I will give
something to A. So this way I have a cyclic dependency between A and B because none
of them is willing to preemptively release their resource and accept the outstanding
requests. Then the next scenario is live lock. So this is opposite of deadlock but even
here the system makes no forward progress. Right. So here the processors make no
forward progress and actually there is lot of activity happening here.

So if I give you an analogy at the traffic junction, all the cars in the deadlock scenario
were waiting still. Right. So they were all standing but in the live lock what we are going
to understand is all these cars will decide that they want to release the resource. So they
will proactively move back. Right. So they will all move back giving way to the other
cars to proceed. But coincidentally what happened is all of them moved back to the same
time.

Then they saw that okay the lane is free, I can move forward. So they coincidentally
again moved forward together. So we are again in the same situation and this can repeat
forever. They all back off at the same time and then again come in front at the same time.

So this is the situation of a live lock. So live lock is when there is no forward progress
happening but there is lots of activity going on into the system. So in the traffic analogy
they all back off and then again try again at the same time and repeatedly they do this
without making real progress. So there is no real progress in the system. What happens
in the hardware? Hardware you can have independent controllers. They are holding
some common resources but it the situation is that they snatch the resource from each
other.

That is I have controller A and B and there is a common resource. So A says I want the
resource, it it gets the resource. Therefore it can consume this resource, B pulls the
resource back towards it and then A pulls it back. So you can say that in the context of
cache coherence. Okay. In cache coherence if a processor sends some request to the
memory or to another processor, let us say P1, P2.

So we can use this example. We send an invalidation request from P1 to P2 for a
particular data block. So P2 says okay I have to invalidate this block. So it invalidates.

Then P1 gets this block B. Then P2 again wants this block B. So it sends an
invalidation. So this is invalidation by P1. After a while invalidation from P2 goes onto
the bus. Okay. So when invalidation of P2 reaches P1, P1 has hardly even accessed the



block B but again it has to relinquish that block for P2. So this way the block will keep
on doing a ping pong between P1 and P2 and none of them will be able to utilize the
block.

So once we request ownership of the block by invalidating others and we lose the
ownership immediately before having finished usage of that resource. Okay. So here if
you understand there is lot of activity on the bus and the system but none of the
processors is able to progress. So this is the example in hardware scenario where I have
controllers A and B. They are using a common shared resource.

So A pulls the resource from B. So it pulls that resource and when A gets the resource
B thinks I want the resource. So B also pulls it back from A. So this resource keeps on
doing a ping pong between A and B and none of them is able to use this. So that is the
situation of a live lock.

The third scenario is starvation. So here starvation means there are one or more
processors which are making no forward progress. So there are one or more. It is not all
processors. Okay. Because if all processors make no progress then it is either live lock or
deadlock. But here among several processors or several modules certain modules are not
able to make progress.

Let us take the traffic analogy. Here how do I solve the live lock? So to solve live lock
what you could do is give priority to some direction. So there are cars coming in all
directions and what we can say is give priority to the northbound traffic. Okay. If I give
priority to this what would happen is all the other traffic or we can say the eastbound so
this one, this traffic has to back off because the northbound traffic has got priority. So
this traffic backs off and the northbound traffic can continue. But if there is heavy traffic
what would happen is the eastbound traffic would never get a chance to cross the
junction.

The other example is you have a busy highway, a busy highway connected to a tiny
countryside road. Right. So if you have this scenario the highway always has vehicles
passing through and hence the countryside road traffic will never get a chance to cross
over. So these are the scenarios of starvation where the countryside is starved and here
the eastbound traffic is starved. In hardware what is the example? We can say that I
have an interleaved memory system where I can send a NAC.

NAC means a negative acknowledgement on a bank being busy. Okay. So I have these
four banks and requests keep coming to them. Okay. And several requests come.
Suppose this bank is busy, it will keep on sending a negative acknowledgement and it



may so happen that the NAC which is going, it keeps going to the same processor and
that particular processor will never be able to finish its memory access. So this is the
example of starvation in a banked memory system. Another example in a bus based
system is on the bus if a certain processor gets stalled of accessing the bus or going on to
the bus to the memory, how should we solve this? So here it is rather easy because I can
use a FIFO of a queue, that is I queue up the requests of everybody. So all the requests
are queued up here hence at some point of time everybody will get a chance to progress.

So I can avoid starvation using FIFO type of queues in a bus based system. What
happens in a scalable systems? That was the interconnect is not bus but a scalable
interconnect. So here solving starvation is more complex but the philosophy used in this
cases is that instead of solving it we believe that the scenarios or the situations of
starvation are very less that is there are, they are very less likely and even if they occur
they are not catastrophic. So they are not going to create a big harm and eventually the
starved module will get a chance to progress. Right. So we want to eliminate adding the
complexity to the system and hence in most of the cases apart from the bus where I can
use a FIFO in complex interconnected systems, I am going to ignore the aspect of
starvation because it is not catastrophic, it is not permanent and the effort required to
solve that is really large. Okay.

So this is the concept of starvation. So we have seen in this lecture the various
correctness requirements and so with this we finish this lecture. Thank you so much.


