
Parallel Computer Architecture
Prof. Hemangee K. Kapoor

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Week - 04
Lecture - 19

Lec 19: Cache Coherence Problem

Hello everyone. We are starting the new module number 3 on cache coherence. Lecture
number 1 is going to discuss about the cache coherence problem. A quick recap related
to shared memory because this whole aspects which we are going to discuss is based on
the shared memory multiprocessor. So in two minutes we will quickly take a recap about
shared memories. Okay. So when we discussed in the first module about introduction to
parallel architectures, we saw that the shared memory paradigm has been a prevalent
architecture.

Why because it consists of small computers or processors connected to an interconnect.
So the interconnect could be bus or bigger global interconnect and to this interconnect
we have connected the different memory modules and the disk etc. Okay. So overall we
found a symmetric multiprocessor if the accesses to the memory are equal for every
processor. And then we also have other types of architectures where we have
non-uniform access and so on. Okay.

So in this setup where I have a processor, each processor has a cache of its own and
then once a processor and a cache forms a module it is connected to the interconnect and
then through that interconnect it accesses the memory. So all these processors are
connected over a common interconnect and they form building blocks of a larger system.
Okay. So how am I going to use such a system? I am going to use it as a throughput
engine. It is very good for parallel programming and also for the operating systems.
Okay. So let us see how it is acting as a good throughput engine.

We have several computer systems connected. So I can have different programs running
on them, maybe not a big parallel program but small tiny programs can run on multiple
such processors and we can complete them very fast in parallel. So essentially I am
increasing the throughput of the system, hence such a symmetric multiprocessor can be
used as a throughput engine. It is also good for parallel programming. Why? Because a
parallel program normally needs to share data amongst the threads or the different
processes and a shared memory paradigm helps me to do this very easily using normal
memory load and store instructions. Right.



So if I have a shared memory then I can do load and stores among these shared threads
and improve my parallel program across multiple processors. Right. So a parallel
program can run on a single processor or across multiple processors. Then such a system
is also useful for the operating system because OS itself is a multi-threaded a big
program and if it has this facility of sharing the memory, it can run across multiple
processors and give a good throughput. Right. So the shared memory is not only useful
for parallel programs, it is also useful for message passing because if you recollect we
had discussed about convergence of the shared memory and the message passing that at
the end of the day we have load stores when we want to send a message also we want to
do read and write across memory. So message passing can also be implemented using the
shared memory.

So that is the usefulness of a shared memory. Okay. So that is why we need a shared
memory system. A quick recap on the existing designs which we have discussed. The
first one as you can see uses shared cache. So here there are different processors but
every processor is using the same first level cache.

There is a single cache used by all the processors and after the cache is the main
memory. So all of them go through the same cache before they reach to the main
memory. The second is a bus based design where every processor has its own cache but
this cache is then connected over the interconnect to the memory and the I/O devices.
The third one if you recollect this is the uniform memory access UMA dancehall
architecture which gives similar latency of access to any memory module. So if you are
accessing this memory module or this memory module it is going to take the same
amount of time that is uniform memory access.

And the third one is a distributed memory which is the NUMA architecture. So this
architecture is non-uniform memory access because if the data item is found here, this is
fast and if we need to go over the interconnect to a distant memory block then this will
be a slow access. Okay. So these are different varieties of shared memory architectures.
In all of this if you notice that every processor is using a cache. The first one has a
common cache but the others have their own private caches.

And why are we using a cache here and not directly with the memory? Because the
cache helps us to bring the data closer because of the property of locality of reference
and due to this every processor is able to access the data very quickly increasing the
access time sorry improving the access time and it also needs to go very less amount of
time to the main memory. So if more caches are found then the processor module does
not go on the interconnect to access the memory and hence the bandwidth requirement of
every processor goes down. Okay. So that is the importance for a cache that it improves



the data access time and reduces the bandwidth requirement. So it reduces the data
access time and also reduces the bandwidth requirement because most of the accesses are
satisfied by the local cache. Right. And the infrastructure is such that it helps me to
seamlessly do load and store.

So a processor does a load or a store. So this load store actually only goes to the cache
from the processor's perspective but from the processor it goes over the interconnect.
Then it goes to some memory and maybe something more before the responses are
generated and given to the processor. Right. So this whole thing is happening using
simple load and store instructions and which is transparent to the processor. So we have
discussed why the caches are critical to the performance.

Now we will understand the property of the memory abstraction. So when I say we
have a memory what is the model of memory I am assuming. Right. So what is the
intuitive model of memory? Memory is nothing but a storage device. It helps us to store
information in a set of locations. Okay. So memory is nothing but a set of locations in
which I am going to store data.

And when I store data inside this I am also guaranteed by the memory model that I am
able to read the latest value of the written data. So if I have written x equal to 5 inside
this and there is no other change to this x then I am going to get x equal to 5. In case
somebody else changes x and I go to read x after that so I should get the latest value of x.
Right? So the intuitive model says that I have a set of locations which help me to get the
latest value of the given location. And at the same time it also gives me a shared address
space for inter-process communication.

So these are the roles satisfied by a memory. So sequential programs definitely rely on
this as well as parallel programs. So in parallel programs that you shared memory to
communicate if these programs are running on the same processor then they will go
through the same cache hierarchy that is the shared item is there in the memory but all
the parallel programs are running on the same processor so they have the same cache
hierarchy to reach to the main memory and hence there is a single path so there is not
much problem. But when a parallel program runs across different processors then it will
go through different caches so the cache hierarchy will be independent of these two
threads and that might create problems. So our objective is that whether they run on the
same processor or whether they run on different processors the end results have to be the
same.

I want the final result to be the same no matter whether the program runs on single
processor or across multiple processors. Okay. So when I expect the same result the



problems will come when I am accessing the memory through different caches. Now let
us see how. So these private caches which are there with the processor might have copies
of variables, the shared variables and multiple such caches will have these copies and
any write by one processor to its local cache variable will not be visible to the others
because then in this case the others will continue to access the stale data. Okay. So all.
So to repeat it again processors have cache if they change variables in their local caches
these changes will not be seen by other processors and overall this is called the cache
coherence problem.

Now what to do about this? This problem is occurring because I am allowing a
processor to change a variable in its local cache which is shared by others. So one easy
solution is don't allow caching of shared values but then the caches are good for
performance, so I cannot take that solution. So disallowing caching is not a good
solution. The other thing is maybe ask OS's help to manage the shared data. However
disallowing is not good taking help of OS is time consuming and hence we want to
handle this whole thing inside the hardware. So the cache coherence problem is required
to be handled in the hardware.

So we will quickly see how this problem arises. Right. So this is memory which has got
some variable x and if this processor wants to do a read of x so if it does a read x the x
comes here. Later this processor might do a write x. Similarly this processor also might
do a read and a write of x. So these two writes the write number 1 and write number 2 by
the two different processors can happen independently and any values of P1 are not seen
by P2. So P1 and P2 cannot see each other's values.

Similarly when P3 goes to the memory to read it is going to get some old value and not
the one which is changed by P1 and P2. Okay. Because of the private caches this is going
to happen. So I will take similar example and elaborate it further. Here I have taken not
variable x but a variable u. Now this variable u is done a read by P1 and then P3 also
reads it.

So this is the sequence. After reading u equal to 5 P3 modifies it to 7. So u becomes
equal to 7 and later P1 issues a read of u. So when P1 issues a read of u, if you will see
this is going to result into a cache hit and the value of u which will be read will be equal
to 5. Whereas if you see in real life the value of u is equal to 7. Actual value is 7 but I
am reading a 5. What if P2 tries to read u? So here P2 will result into a cache miss and it
will go to the memory bring the value of u.

So very likely it is going to read the 5 and not the 7. Okay. So whether P2 reads a 5 or a
7 will depend on the type of cache P3 is having. Okay. So if P3's cache is a write back



cache, P3's cache is a write back, so write back caches will evict the data item only when
the block is removed. Right? So when this data item is evicted only then it will update
the memory. So if it is a write back cache, u equal to 7 will remain with P3 and it will not
reach the main memory.

So here let us list the inconsistencies. So in this case P1 will get the value of u equal to
5 and similarly P2 will also get the value of u equal to 5. So these are wrong values or
incorrect values. So P1 and P2 both are going to get incorrect values in this scenario and
definitely the memory is also inconsistent. So even the memory will not have the correct
value at the end of event 3, Right? Because event 3 is only updating the local variable u
inside P3.

So that is about write back. Now we will take the second scenario when P3's cache is
write through. If P3's cache is write through the u equal to 7 will have reached here and
this will become 7 at the end of event 3. So because of this write through behavior
which modules will have the wrong data? P1, yes because P1 has a local cache hit. What
about P2? In this case P2 will get the correct data because P3 is a write through cache
and when P2 comes to the memory it will get the new updated value. This is updated P1
gets the old value and P2 may get a new value.

So I am not saying whether it gets old value or new value because when P2 comes to
read the memory it depends whether the write through has finished or not. So after the
event 3 the write through takes place. But if the P2 goes to the memory before the write
through has finished, then it might get the old value. If it goes after the write through has
finished, then it might get the new value. Hence we are saying that P2 may or may not
get the new value. Okay. So we have seen the effect of write through as well as a write
back cache. Okay.

Then another scenario is when two processors perform write back the same variable
back to back. So in this suppose P1 and P3 both change the values to the memory. So
both evict the blocks and P1 will write some its own value of 5 or 6 something and P3
will write its own value of 7. So P1 sends u equal to for example 5 and P3 sends u equal
to 7. So both of them evict these blocks and both these blocks go to the memory.

So both these write backs will happen in some order and so what is the final value
which the memory will have for u? So inside the memory what is the value of u? Is it
equal to 5? Is it equal to 7? Right? So it depends on what order the write backs reach the
memory and although anything is okay but from the program's correctness point of view,
we have to be sure what is the final value which we are expecting to be written into the
memory. So the ordering of writes is also equally important. Right. So therefore



maintaining the shared data items coherent across all these caches, right, all these private
caches are these shared data items and they need to be maintained coherently and this
challenge of maintaining coherence arises because of the private caches and that this
problem is called the cache coherence problem and we are going to learn how to solve
this. Right. So this lecture was to introduce what the cache coherence problem is about.
Thank you.


