
Design and Implementation of Human – Computer Interfaces
Prof. Dr. Samit Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module No # 02
Lecture No # 07

Functional specification of Requirements

Hello and welcome to the NPTEL MOOC’s course on design and implementation of human

computer interfaces. We are going to start lecture 7 which is related to requirement specification

particularly specification of functional requirements.

(Refer Slide Time: 01:02)

If you can recall we are currently discussing the software development lifecycle stages where our

primary concern is to develop interactive software. Now interactive software again just to

recollect refers to a class of software that are supposed to be used by layman users who are not

experts in the technology. For them we need to take into account various things most importantly

user feedbacks at different stages of development.

And in order to do that we have a special or a specific software development lifecycle meant for

building interactive software and we are currently discussing different stages of the life cycle. To

recollect there are several stages requirement gathering, analysis and specification is the stage

from where we started our discussion. We have not discussed in details the feasibility study stage

which is not very relevant for our core concepts.



After requirement there is this design stage, prototyping stage and evaluation of prototyping

these 3 sub stages in a cycle constitute the design prototype evaluate cycle. Now here design

refers to both design of the interfaces as well as interactions and also design of the system in

terms of modules. Now those modules once finalized are to be implemented using programming

some sort of programming language that is the coding and implementation stage.

Once the system is implemented we need to test it test the code that is the code testing stage after

the entire system is coded implemented and tested. And we are to some extent assured of its

executability we still need to test it for usability. Which is one of the key concerns in our

interactive systems and that is done in the empirical study stage which is expected to be done

once or twice at the most because this stage is quite costly.

However there is a possibility that output of this stage can lead here and there can be a cycle. So

once this study stage is complete and we are assumed of the usability as well as executability of

the system we go for deployment and maintenance that is our last stage. Currently we are

discussing the requirement, gathering, analysis, and specification stage.

(Refer Slide Time: 04:11)

Now we learned about usability earlier which is one of the crucial aspects of the design of

interactive system. We also have learned about the usability requirement gathering why that is

important and how it helps building a system that is likely to be acceptable to the end users? We



have gone through in the previous lecture one method of requirement gathering particularly

usability requirement gathering that is contextual inquiry.

Again it may be noted that this is only one of many such techniques however we discussed this

technique contextual inquiry technique in some details.

(Refer Slide Time: 05:01)

Now contextual inquiry technique; is used to gather the requirements. And we have also seen

how these requirements can be analyzed whatever we have gathered during contextual inquiry

can be analyzed to identify design goals or some such things through the reflect stage using

various tools such as affinity diagram method. So we discussed in details affinity diagram

methods with examples to understand how the observations that are made during contextual

inquiry can be converted to some design guidelines or something that can help us design usable

product.

In this lecture our focus is actually how to specify those designs so that other team members can

make use of the specification in subsequent stages of the life cycle. So this lecture will primarily

focus on notations and conventions that are used for specification of system requirements that is

the subject matter of this lecture.

(Refer Slide Time: 06:20)



Now before we go to the actual subject matter let us quickly recollect that whatever we have

termed as usability requirement earlier is also known as non-functional requirements. This is a

term that is used to refer to requirements such as usability and some other things so usability

requirements are one type of non-functional requirements. So what are the other non-functional

requirements let us have a quick recollection of those types.

(Refer Slide Time: 06:58)

So there we can have performance related non-functional requirements operating constraints that

can be listed as non-functional requirements. Economic considerations which are again

considered to be non-functional requirements life cycle requirements and finally interface issues



that are non-functional requirements. Now among these interface issues both hardware and

software interface issues are used are referred to and the software interface issues are generally

termed as usability which belongs to this kind of non-functional requirements.

(Refer Slide Time: 07:44)

And we have repeatedly emphasized that usability is one very important non-functional

requirement that has to be taken into account while we are going to build an interactive system.

So we have discussed several non-functional requirements which are very important in the

context of system design.

(Refer Slide Time: 08:11)



And in particular we have discussed usability which is very important in the context of

interactive system design now they are of course important. But one issue with non-functional

requirements only is that these are difficult to formally specify and unless they are properly

specified. Unless we are able to specify the requirements in a proper way a suitable way it is

difficult to convert them to design requirements or into a proper implementation of the system.

So we need to somehow be able to specify these requirements in a proper way but unfortunately

non-functional requirements are not very much suitable to be converted to that proper way. So

that we can immediately be able to convert it to some implementation or some design of the

system.

(Refer Slide Time: 09:12)

In fact whenever we are talking of system requirements and this next stage is implementation

then our objective should be to have requirements which are easy to understand and implement

in the form of a program. That is one sort of requirement of the requirements so to speak that we

should aim at. And in order to achieve that what we need is some formal way to specify the

requirements that is required.

(Refer Slide Time: 09:50)



Now when we say that we want to formally specify the requirements that means we want to

make it easy for the team to implement the next stage of the development lifecycle by team I am

in the development team. And when we are able to do that when we are able to specify

requirements in a somewhat formal manner for quick implementation those requirements are

generally called functional requirements.

They have these properties that they are easy to understand and convert to codes we shall see

with some examples what we mean by these terms that convert to codes easy to understand and

so on.

(Refer Slide Time: 10:41)



Now as the name suggests so the name is functional requirement so as the name suggests

functional requirements specify a system or the requirements of the system in terms of functions.

What are functions? Mathematically functions are defined in terms of its input output and here

also we specify the requirements in terms of functions that take some specific input produces

some specific output and these functions also typically has some purpose mentioned in the

specification. So in functional requirement we have functions defined in terms of input output

and purpose.

(Refer Slide Time: 11:35)

So let us depart into the idea of functional requirement specification what are those and how to

specify?

(Refer Slide Time: 11:50)



Now before we are able to create a functional requirement specification we should be aware of

few things first of all when we are talking of functional requirement specification the main idea

is abstraction. What is meant by this term is that? We only need to identify black box functions to

be supported by the end product or the system. And in this black box functions we need to only

specify the input and output.

So, in other words abstraction tells us that identify only the need rather than how to achieve it. So

we do not know how the function can be implemented or defined rather only what input it will

take and what output it should produce. So the function in itself appears to be a black box with

only an input and output specified rather than how the function should be implemented? So that

is the first thing that we should keep in mind here we are trying to only identify functions as

black boxes rather than trying to design algorithms to implement the functions.

(Refer Slide Time: 13:07)



Second thing is decomposition and hierarchy so when we are trying to identify the functions we

should decompose the entire requirement into some sort of hierarchy of functions and sub

functions. Otherwise it will be difficult and too complex to specify the functions. If we can think

of hierarchical representation of functions and sub functions then it will be easier for us to

specify the function input and output much more easily than if we do not follow any hierarchy.

So essentially this decomposition into hierarchical levels and the levels of the hierarchy help us

better manage the description or the functional description of the system. So we need to have

abstract notion of function as black box with only input and output. And also we need to think of

the functions in the form of a hierarchy so that we are able to better manage it easily define it and

so on.

(Refer Slide Time: 14:22)



So what are the key points that we should remember while defining these functions? First thing

is we should avoid exploratory style of definition what it means? It should not be the case that

first we should think of implementing the functions and then from there we go back and think of

creating the functional hierarchy. That is exploratory style first we keep on implementing and

then from that implementation we learn about the presence of the functions.

It should be the other way around first we should think abstractly the functions and then think of

how to implement them in a letter design stage. Abstraction as we have already pointed out the

function should be thought of in a very abstract form. We should not start thinking about the

algorithm to implement the functions rather we should think of functions as black boxes and only

input and output need to be thought of plus the purpose of the function.

And finally it will be easier to manage the specification if we can think of the functions in the

form of a hierarchy of functions and sub functions rather than only one level that will make

things easier to manage. So these 3 things we should keep in mind we should try to avoid

exploratory style, we should think of functions as black boxes and we should try to think of a

functional hierarchy to represent the all the functions in the system.

(Refer Slide Time: 16:04)



Keeping these in mind we should come up with a functional hierarchy that should be our end

product in the functional requirement specification stage. And when we put these requirements in

textual form in some specified format what we get is called the SRS or software requirement

specification document. So SRS this acronym comes from these terms these words software

requirement specification.

Now this SRS document is essentially our quote unquote formal representation or specification

of the requirements. So our objective is to create an SRS document after this functional

requirement specification stage is over.

(Refer Slide Time: 16:59)



Now in SRS there are specific formats to be used generally what is followed is a hierarchical

structure with some name given to the hierarchy levels like r 1, r 1.1 and so on. And at each level

or r where r 1.1 etcetera which indicates the hierarchy each level represents a function with

clearly defined input and output and some description which is optional. So when we are trying

to specify SRS essentially we need to use these notations that; is a common practice that we

create hierarchy label.

The hierarchies each level of the hierarchy should be given a label with some name and some

description and these levels can further be decomposed into sub levels with similar notation.

Now let us try to understand this idea of creating SRS from a functional requirement hierarchy

let us try to understand this with respect to one example.

(Refer Slide Time: 18:33)

If you may recollect we introduced this example in one of the earlier lectures this is a class note

taking application where the primary users are likely to be the college going students. So earlier

we have seen how to create usability requirements for this application using the contextual

inquiry method. Now let us try to see how we can create a functional requirement specification

for this application.

(Refer Slide Time: 19:06)



What are the requirements that we can identify for this application? One obvious requirement

can be authentication that is for a user to access the app feature so the user needs to authenticate

which is common for all the apps. So we can have such a function as a requirement

authentication function now authentication function can further be decomposed into sub

functions.

For example there can be one requirement to create an account that can be one sub function

under authentication. Then there can be a requirement to login that can be another function under

authentication function one more function can be management of the account, account

management it can be treated as another sub function of the authentication function.

(Refer Slide Time: 20:13)



So diagrammatically we can put these functions and sub functions in the form of a hierarchy as

shown in this figure. So here at the top level of the hierarchy we have authentication function

then under authentication we have these 3 sub functions create new account login and update

password. So update password can be one sub function under authentication function.

Now update password can have sub functions under it as well for example there can be one sub

function send one time password can be another sub function set new password. So this can be

one way of creating a functional hierarchy for the authentication function. Of course it may be

noted that this cannot be the only way possible you are free to create your own hierarchy for

authentication you can add more functions edit some functions and so on. So this is just one

example of how such a hierarchy can be created.

(Refer Slide Time: 21:29)



Let us look at another high level function this is related to managing the notebook in the

application. So this can be a higher level functional requirement that the user wants to manage

the notebook. Now under these functions there can function there can be many sub functions

again it can lead to a hierarchy of functions and sub functions. For example there can be a

requirement to create or delete note, can be a requirement to open or close a note. Can be a

requirement for editing a note, can even be a requirement for viewing all the notes and so on.

(Refer Slide Time: 22:33)

So we can create another hierarchy for notebook management function graphically we can have a

representation like the one shown here for such a hierarchy. So at the top level we have notebook



management functionality under this there are some functions create note, create notebook, open

note, edit note, list notebook contents, delete note, delete notebook etcetera. Under edit note we

can have further decomposition add text, draw content, insert image, manage table, delete

content etcetera.

Under draw content further decomposition is possible like draw shape, freehand drawing etcetera

similarly under manage table further decomposition is possible with sub functions like create

table, edit text, insert row, insert column and so on. So what this hierarchy shows is that? It is

possible to create a decomposed functional requirement hierarchy which will make it easier to

understand the overall requirements.

Instead of this hierarchy if we have simply mentioned this top level hierarchy like notebook

management then it would have been difficult to actually specify input output as well as

description. What this is supposed to do? Because in that case it would have been very complex

to specify those things instead of that by decomposing we are able to better manage this

complexity by dividing it into sub function.

So then now what we need to do is basically specify only the input output for the sub functions

which is much more easier compared to specifying everything for only one function.

(Refer Slide Time: 24:49)



Let us see one more functional requirement example for the same application requirement for

searching in the notebook. Now this can again be considered to be a higher level functional

requirement top level and under this there can be several sub functions again creating a

hierarchy. Requirement for searching by text this is one possible sub function another possible

sub function can be searched by date.

(Refer Slide Time: 25:24)

Then we can have a hierarchical depiction of the functional hierarchy in this form where we have

search in notebook under which there are 2 sub functions search by text, search by date.

Similarly we can have another high level hierarchy search in note and it is possible to decompose

it further.

(Refer Slide Time: 25:55)



So then what we get what we get is a larger hierarchy so we merge these hierarchical

descriptions together to get a larger hierarchy to represent the functional requirements of the

system. Of course this is not complete but it will give you some idea of what we mean by

hierarchy. So, here as you can see we have top level functional requirements authentication,

notebook management, and search in notebook, searching note.

Then we have second level hierarchy create account login, update, password similarly create

note, create notebook and so on. Then we can have third level also one time password, set new

password even fourth level in this case draw shape, free and drawing etcetera. So there is no

restriction on up to how much level we can go the more decomposition is the better for

specification.

It will bring in clarity of thought if you have very less number of levels and everything in the

single level then it is generally considered to be not a good specification assuming. That the

system is complex for very simple system of course that multiple levels of hierarchy; may not be

required.

(Refer Slide Time: 27:41)



Now so far what we have discussed is just a visual depiction but that is not a specification as

such for the requirements. Now we need to have a textual description as I mentioned before so

textual description follows its own format with level numbers r 1, r 1.1 etcetera and function

name input specification output specification and some function description. Still considering the

function as a black box rather than describing the actual algorithm to implement the function.

For example let us consider this functional requirement create new account so this is as you can

see it is second level. So we can call this level 1 and then create new account can be termed as

level 1.1 the same thing we have used to denote in the textual description this is the level

indicator then we have given it a name which is the same name that we have used earlier create

new account.

Then there is one input specification so what input this function takes it simply mentioned user

information. So it can be any information so it is possible to keep it vague at this stage because

we are not going to discuss about how to implement? So the flexibility should remain output

specification also is required here it is mentioned that some message will be given as output. And

then there is this optional section on description of the function.

So it says what the function does purpose simply says create a new account using user details

and display account creation message that is simply the purpose so in this way we can specify

the functions in the functional hierarchy.



(Refer Slide Time: 30:00)

Similarly we can create specifications for other functions say for example the second function is

login so accordingly we gave it the number R 1.2 as you can see in the hierarchy. So the first one

if it is given R 1.1 then we can call it R 1.2 then R 1.3 then this 1.3.1 and so on. So we are

following this nomenclature note that this need not be the only way to represent levels and in

different places you may find some other ways to represent these levels of the hierarchy.

However here in this course we will follow this convention so the level number is followed by

the name of the function some name you have to give, then input specification, output

specification and description brief description of what the function does? Like it simply says

verify user credentials and provides access to user data. Note that nowhere we are referring to

any details related to how the function can be implemented.

For example here in login we are not telling how this function will produce the output with from

the input. So how this processing takes place or the algorithm to create the output is not specified

anywhere it only states the purpose rather than the actual way to implement it.

(Refer Slide Time: 31:48)



Some more examples R 1.3 update password then 1.3.1 send one time password input, output

and description. It is generally preferable that higher level also you specify the input, output and

description optionally for each level function you should do that not only for the leaf level notes

that are mentioned here. So for our 1.3 also you should specify what is the input? What is the

output and what is the description?

Then do the same for R 1.3.1 that is the sub function of 1.3 as well as our 1.3.2 this is the another

sub function of R 1.3 set new password input output description. So at each level for every

function you should ideally specify the input output and description for each and every function

in that level. One common mistake occasionally we perform is that when we are specifying the

output we also specify some functional words.

For example here send one time password output we may be tempted to write send one time

password. Now the with the addition of the word send it no longer remains an output rather it

becomes a process in itself so try to avoid using this type of action words in either input or

output if you are using action words then the description is wrong. So you must keep this in mind

and avoid using action words any sort of action words in the input and output. Otherwise those

will not remain input and output instead they will become functions itself.

(Refer Slide Time: 33:59)



So another top level note create note again input output description specification is given in a

similar manner. So you can now get some idea of what we mean by formal specification. So here

we are giving a level name, a label to the level name, name of the functional requirement some

idea of the input to be provided to the function in a very flexible and open manner. It should not

be very specific because here still we are talking of black boxes as functions so we are not going

into the details of any algorithmic design.

So our input should be kept as much open as possible like here we are simply mentioning that

provide as input location and name but in which format how all these details we are not

providing so that is a flexibility that we want to keep at this stage. Similarly for output we are not

specifying the exact nature of the output instead a broad idea of what the output should look like

and what it should what purpose it should solve rather than exactly which format it should be

produced in and how it should look.

So this idea of labels, names input, output specifications. As well as the idea to keep the inputs

and outputs flexible and open to interpretation for subsequent design and implementation stages

are key things that should be remembered while designing and specifying the functions.

(Refer Slide Time: 36:04)



Then comes open note R 2.3 again with input, output and description and this openness is here

also note location but not exactly in which manner whether it is a single number, coordinate that

we are not specifying. Similarly content what this content means it is left to be decided in later

stages rather than specified here itself and also a description broad description of what the

function is supposed to do?

(Refer Slide Time: 36:42)

In this way we can specify all the functions in the hierarchy for simplicity and brevity we have

omitted certain parts. Like here R 2.4 edit note the input, output and descriptions are omitted

only the lowest level note shown to have this description. But remember to add it for each level



like R 2.4, R 2.4.2 draw content as well as 2.4.2.1 draw shape which is a sub function of this

function which is in itself; as a function of this function.

So draw shape is a sub function of draw content, draw content is a sub function of edit note and

for each of these levels we should have input, output and description as shown here input here

output here and description. So when we have created this hierarchy our next task is to create this

textual description in the format shown in the examples. Again this is not the only way to specify

there can be a different; conventions followed however broadly it should convey the message of

the level which level the function is situated at then the function name, input, output and

description.

(Refer Slide Time: 38:17)

So you should note in the examples how the functions are represented name, input, output,

description, plus the level number all 5 are important. Then another thing to be noted here is that

the abstract nature of the representation. So none of the functions that we have seen in the

examples tell us anything about how to implement those how to convert them to notes? So

effectively what we are looking at is a black box where we provide the input and get the output

without bothering about how we get the output.

So that abstract nature of specification should be noted and the hierarchy of course how we

created the hierarchy to represent the requirements should be noted and should be followed in



problems that you face. Also as I said follow the naming conventions typically what we have

shown here can be followed but there can be other possibilities.

However anyone should be followed consistently throughout the life cycle. So we have shown

one convention where we gave particular level of the hierarchy and used name for the function

then input kept it open, output kept the scope open, some optional description part which should

be done for each and every function in each and every level. It should not be considered only

required at the last level even at the higher levels also for each function you should have ideally

input, output and description specified.

(Refer Slide Time: 40:16)

The example that I have shown of course is not complete and as a put forth thought you can

think of completing the hierarchy as well as the specification.

(Refer Slide Time: 40:30)



So with that we come to the conclusion of this topic so what we have covered today is what are

functional requirements? What are the things we should keep in mind while creating functional

requirements and how to specify those requirements? So one thing you should keep in mind is

that this, functional requirements need not be created based on end user studies. Some domain

knowledge plus some discussion with the clients may be good starting point to create the

functional requirements.

Then subsequently once usability requirements are available some of those requirements can be

converted to functions and put in the functional requirement hierarchy and subsequently included

in the SRS document. We shall see in a subsequent lecture how to do that, apart from that other

things we should keep in mind is that how the functions are specified? How they are decomposed

how they are labeled and what are the things to be specified in the SS?

To recollect we need to specify for each function at each level its level, its name input, output

and purpose. And in the input and output we should not be too specific about the nature of the

input and output rather we should keep it open for interpretation at later stages of the

development life cycle. Because here we are not bothered about how the functions are to be

implemented rather what the function should do?

Accordingly we can keep the input and output somewhat open ended and flexible to

interpretation whatever I have discussed today can be found in these books for further details you



can refer to chapter 4 of the first book and chapter 7 to 8 of the second book. With that we

conclude today is lecture I hope you have got some idea of what we mean by functional

requirement and how to represent it both visually as well as formally in textual format in the

form of SRS document.

In subsequent lectures we shall see how usability requirements can be incorporated in the form

of functions in functional requirements. So that our systems can have better usability that is all

for today see you in the next lecture thank you and goodbye.


