
Design and Implementation of Human-Computer Interfaces
Dr. Samit Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology – Guwahati

Lecture – 36
System Integration and Testing

Hello and welcome to the NPTEL MOOCS course on design and implementation of

human-computer interfaces, lecture number 30 where we will continue our discussion on how

to test the system. As is the practice we are following before we start the lecture, let us

quickly recap the things that we have learned and where we are currently.

(Refer Slide Time: 01:09)

So, if you may recollect, we are discussing interactive system development lifecycle. In this

lifecycle there are several stages. We have covered many of the stages and we are currently

covering the implementation stage. So, among the stages we have covered requirement

gathering analysis and specification stage. Outcome of the stages the SRS document as we

have noted earlier.

Then we have covered design, prototyping and evaluation stages which together constitute

the design prototype evaluation cycle. In the design we have also covered the system design

as well as the interface and interaction design. Outcome of the design stages the design

document, both for interface design as well as system design. Outcome of the prototyping

stage is the prototype that is created and outcome of the evaluation stages the evaluation

report of the prototypes.



We have covered the coding and implementation stage as well. In the coding and

implementation stage, we have learned about good coding practices and do's and do not’s for

coding., the outcome of the stages the code. Currently we are discussing the code testing

stage. So, in this stage we are discussing how to test the code that we have written to

implement the system.

(Refer Slide Time: 02:43)

So, we have learnt about implementation using code and we are discussing the testing. Code

implementation involves code writing which involves following good coding styles and

testing can be done at different levels. At unit level, we have learnt about the review-based

testing and the execution-based testing. Review-based testing involves code walkthrough and

code inspection methods which we have discussed in details.

Execution-based testing involves black box testing and white box testing, which also have

discussed in details in the earlier lectures. Outcome of each of these testing methods can be

testing document as we have seen earlier. Now, all these testing that we have discussed so far

are done at the unit level. Recollect that while talking about design of a system, we talked

about designing it at module level, creating a module level hierarchy. So, the unit level is

basically referring to the implementation and testing at the module level.

(Refer Slide Time: 03:56)



So, in this lecture we are going to talk about how to test the whole system once we put

together all the modules or the units. So, putting together of units and testing of the whole

system together is the subject matter of this lecture.

(Refer Slide Time: 04:27)

Now, as we know or we have already noted in the earlier lecture, particularly during our

discussion on system design, the whole system is not a monolith. So, it consists of subsystem

subsystems, in other words modules and units. So, we are supposed to create a module

hierarchy, hierarchy of subsystems to go for the design of the whole system that makes it

easier to understand and maintain the system.

Therefore, while implementing we also go for implementing one unit at time rather than

trying to implement the whole system together at the same time. So, testing the whole system



at a time becomes difficult because we have a modular hierarchy and we require some

alternative approaches for testing the whole system once all the units are implemented and

linked together to form the whole system.

(Refer Slide Time: 05:24)

In order to test the whole system, we follow broadly two approaches. One is bottom-up

testing and the other is top-down testing. So, what are these concepts? What is bottom-up

testing and what is top-down testing? Let us try to understand these different testing

approaches.

(Refer Slide Time: 05:50)

In the bottom-up testing what we do? Each subsystem is tested separately and then the full

system is tested. That means as the name suggests we go from bottom to top. At the bottom

level, there are subsystems and at the top level there are subsystems put together to form the



whole system. So, we test the subsystems or units and then test the whole system. Now, a

subsystem may consist of many modules, which communicate with each other through

well-defined interfaces between modules.

So, do not confuse it with user interfaces, these interfaces between modules that form the

subsystem. So, while we go for bottom-up testing, our primary purpose is to test the

interfaces whether the interfaces are working properly. Now, there are two types of interfaces,

control interfaces and data interfaces. So, we test both types of interfaces in the bottom-up

testing.

The test cases that we designed to test the interfaces should exercise all interfaces in all

possible manners that is the general principle that is followed while we use bottom-up testing

method for testing the whole system. So, then in the bottom-up method what we do, we first

test the units and then join them together and test the whole system. In the testing, the

primary emphasis is given on how the interfaces are performing because already we have

done testing at the unit level.

No need to test them separately, but whether their communication is taking place as per

expectations that is what we need to test, so it tests the interfaces. Both control and data

interfaces we test and our test cases should be designed in a way such as that all these

interfaces are tested in all possible manners that is the general principle guiding the

bottom-up testing approach.

(Refer Slide Time: 08:13)



Next is the top-down testing. What we do in this top-down testing? Here the testing starts

with the main routine. So that means we are starting with the main routine at the top and then

slowly going to the bottom. After top-level skeleton is tested, the immediate subroutines of

the skeleton are combined with it and tested and this process continues till we cover the

whole system.

So, first we start with the main routine, a skeleton version of it, then we combine it with the

immediate subroutines and test it and this process continues till the entire system is tested.

Now, the problem with this is that while we are testing at the top, we may not have access to

the lower-level routines. So, in order to implement this approach, we require additional

support.

(Refer Slide Time: 09:20)

So, these approaches may require a concept called as stubs. Stubs simulate effect of

lower-level routines called by the routines under test, particularly when we are following a

top-down approach. So, we require stubs which simulate the effect of lower-level routines

while we are following top-down approach. So we start with main routines, but the lower

routines are not available.

So we use stubs instead of the actual routine so that the effect of the lower-level routines for

the given test cases can be simulated, but that is not only restricted to the top-down approach,

in bottom up approach also we require some additional support. We require driver routines.

These routines are used during bottom-up testing approach to simulate the behaviour of upper

level modules that are not yet integrated.



So, in bottom-up approach, we start at the bottom and slowly go up. While going up all the

routines that are available at the higher level may not be available to the person have the

system under test, so at that time we use driver routines to simulate the effect of those

routines that are not yet available. So, for full system testing either bottom-up or top-down,

we require some additional things to do.

If we are following a top-down approach, we require the help of sub modules. If we are

following a bottom-up approach, then we require the help of the driver modules. So, those are

the two broad categories of approaches we use for system testing. Now, let us quickly have a

look at different stages of systems testing. How many stages are there and what they do?

(Refer Slide Time: 11:26)

There are mainly three stages; alpha testing, beta testing and acceptance testing. Let us see

what is what.

(Refer Slide Time: 11:38)



Alpha testing, this is the first stage of system testing. In this stage what happens is that the

full system testing is carried out by a test team which is part of the organization. So, within

the organization the testing takes place.

(Refer Slide Time: 11:58)

Next is beta testing. Unlike the alpha testing, beta testing is performed by a select group of

friendly customers which may be specially recruited. So, in case of alpha testing all the

members of the test team’s are part of the organization, so no outsiders are involved. In case

of beta testing that is not the case, select group of friendly customers are specially recruited to

perform the testing. Note that here we are talking about customers, not the end users.

(Refer Slide Time: 12:43)



The third and final stage of testing is acceptance testing. This is entirely performed by

customer. It can be any customer, not necessarily a select group of friendly customers

specially recruited. So, this is the last stage where customers provide feedback on the

performance of the system. So, we have learned about broad approaches, stages of testing, let

us focus on types of testing. What are the different types of system testing?

(Refer Slide Time: 13:24)

So, in system testing what do we test? We test functionality and performance. These are the

two things that we test.

(Refer Slide Time: 13:31)



When we test functionality, SRS is our primary document. Whatever is listed in SRS those

things we test to see if the system satisfies the functional requirements that are specified in

the SRS.

(Refer Slide Time: 13:54)

In the performance test, that is the other broad category of tests, what we do is perform

non-functional requirement testing. So, in the performance test testing is for non-functional

requirements. What are those requirements and how those are tested, let us have a quick look.

(Refer Slide Time: 14:13)



First is stress testing. In this testing system performance is evaluated under abnormal or

illegal input conditions in short time periods. So, that is one kind of performance test that we

popularly perform or frequently perform during non-functional testing.

(Refer Slide Time: 14:41)

Then comes volume testing. Here what we test? We test system performance for large input.

So, in the previous case stress testing within a short time span, we provide large amount of

input or illegal or abnormal input and test. In case of volume testing, timespan is not the issue

rather the amount of data that the system is being asked to process is the issue. So, we test

how much data it can process, the volume of the data.

(Refer Slide Time: 15:18)



Then comes configuration testing. So, you have stress testing, volume testing, then comes

configuration testing. This testing is done to analyze the behaviour of the system in various

hardware and software configurations specified in the requirements. Typically, when you

specify the requirements for the system, you specify operating environments including

hardware and software. Now, in configuration testing those specifications are tested, whether

the system is actually performing under those specifications that we test in configuration

testing.

(Refer Slide Time: 16:08)

Then comes compatibility testing. So, in this testing we check if the system interfaces

properly with other systems. This is another special type of testing, sometimes it may so

happen that the system under test needs to work with some other system for that some



specific interfaces may be defined, and in compatibility tests we check if those interfaces are

working as per expectations.

(Refer Slide Time: 16:45)

Another testing is regression testing. In this case, we test the backward compatibility of the

software with older platforms or systems. Sometimes softwares are upgraded to newer

versions. Now, whether those newer versions work with compatible software of older

versions those things we need to test and those testing are done under the broad concept of

regression testing.

So, in compatibility testing we do not check for backward compatibility, we check for current

compatibility whereas in regression testing, we check for backward compatibility.

(Refer Slide Time: 17:34)



Then comes recovery testing. Under recovery testing what we test? We test system response

to faults, what are those faults? Loss of power, faulty devices, faults in services, faulty data

and so on. So, when we perform these types of tests that is recovery testing, so how the

system behaves or how the system responds when faulty environment is there. Now, fault can

happen in any one or multiple of those things such as loss of power, devices, services, data

and so on.

(Refer Slide Time: 18:30)

We also have documentation testing, what happens here? As the name suggests in this testing,

various manuals and documents are created and tested for understandability. It may appear

that this is not a very significant test and any document created should be understandable, but

that is not the case. When we create documents, it should be thoroughly proofread and tested

for understandability, readability and maintainability, those things are also tested as part of

performance test of a system under documentation testing.

(Refer Slide Time: 19:18)



Finally, comes usability testing which is the most important non-functional requirements in

the context of our focus that is interactive systems or human=computer interfaces. So, far

when we talked about different types of testing at unit level or system level such as review

based testing, black box testing, white box testing or these top-down and bottom-up testing.

primarily these were meant to test functionalities.

So, the starting point of system design was SRS and these testing are done to see how much

the implementation confirm to the requirements specified in the SRS document. Now, as we

have noted earlier in case of interactive systems one important consideration is usability. So,

functional requirements are not the only thing, usability requirements are also very important

to make a successful human-computer interface.

So, far in our testing we did not discuss much about usability requirement testing except in

the design prototype evaluate cycle where we mentioned that interface designs are prototyped

and evaluated with experts to check for usability issues. But that is a very quick way of

testing, we require more rigorous systematic and scientific testing methods which is a major

stage in interactive system development lifecycle.

In the subsequent lectures, we are going to talk about usability testing in details. Other

performance testing that we have mentioned like stress testing, volume testing, compatibility

testing, regression testing, configuration testing and so on we will not devote much time on

those and we will have only the brief idea that we have discussed here. However, on usability



testing, we are going to devote several lectures next to understand in details how usability

testing can be performed with end users in a very systematic and rigorous manner.

So, that is in summary what we need to test when we are testing the full system. Just to recap,

we mentioned about two broad approaches to test the whole system, top-down and

bottom-up. Earlier we have seen unit level testing in top-down and bottom-up approaches

along with unit level testing we test the whole system. When we talk about bottom-up

approach, we essentially test the unit individually and then put them together.

And we test the interfacing between the units so that the whole system is tested. In top-down

approach we start with the main routine and progress in an iterative fashion by adding

immediate subroutines to the main routines and this process goes on the next immediate

subroutine to the subroutine attached to the main routine and so on. And this process goes on

till we manage to test the whole system.

In both the cases, we require additional implementations to support the testing because your

whole system is not available at a time. So testing whole system at a time is difficult, so we

require additional support. If we are following a top-down approach, then stub modules are

used to implement or simulate lower-level responses which are not immediately available to

the main routines or the higher routines.

Similarly, if we are following bottom-up approach, then we need to implement driver

modules which are used to simulate response of the program for higher-level modules which

are not immediately available for the subsystem under test. Now, these top-down or

bottom-up approaches are primarily meant for functional testing. Along with that, we also

need performance testing. In functional testing or the top-down and bottom-up approaches,

there are primarily three stages of testing.

Alpha testing where the testing is done within the organization, beta testing where some

selected customers are part of the test team and acceptance testing which is done by the

customers. Along with functional testing, we also perform performance testing. Several

performance testing’s are there including stress testing, volume testing, compatibility testing,

configuration testing, regression testing, documentation testing as well as some other

testing’s.



One of the important testing’s here is the usability testing, which is our primary focus in this

course. In usability testing, we test for usability issues with end users. So, in subsequent

lectures we are going to learn about such testing methods and the process involved.

(Refer Slide Time: 24:56)

Whatever we have discussed today can be found in these books excluding details of usability

testing of course, but the broad ideas of these different testing methods can be found in these

books; Fundamentals of Software Engineering chapter 10 and Software Engineering A

Practitioner’s Approach chapter 19 to 21. Of course, in these chapters you will find the

concepts in more details than how we covered.

For our purpose, this brief description is sufficient to explain the concepts. Next, we will

focus more on details of usability testing. Hope you have enjoyed the lecture and understood

the concepts. With this, we have come to the end of our discussion on the code testing stage.

As you can quickly recap in this code testing stage, we have learned several concepts mostly

focused on unit level testing that includes code review, execution-based testing.

And also, we have covered in brief ideas that are important for system level testing. Next, we

are going to talk about usability testing, looking forward to meet you all in the next lecture.

Thank you, and goodbye.


