Design and Implementation of Human-Computer Interfaces
Dr. Samit Bhattacharya
Department of Computer Science and Engineering
Indian Institute of Technology — Guwahati

Lecture — 35
White—-Box Testing Case Study

Hello and welcome to NPTEL MOOCS course on design and implementation of
human-computer interfaces. We will continue our previous lecture that is lecture number 29.
So, this is a continuation of lecture number 29. In the previous lecture, what we have learned
is about white-box testing. So, if you may recall it so this is one of the several code testing

methods. Broadly, there are two categories of testing, review based and execution based.

We have seen the review-based testing earlier. We have gone through one case study for
review-based code testing. We have also seen that there are two types of execution-based
code testing, one is black-box testing and the other one is white-box testing. Earlier we have
gone through in details about black-box testing and also we have gone through a case study

on black-box testing.

In the previous lecture, that is lecture number 29, we have learned about white-box testing in
details including the different ways to perform white-box testing. In this lecture, we are going
to continue that discussion and we are going to go through a case study to better understand
white-box testing approaches.

(Refer Slide Time: 02:01)

TESTING DOCUMENT

for

Business Management Software

version: 1.1
9™ June 2017

Prepared by

HT Gaunaga paa T

Supervised by

Like in the previous case study discussions, here also we will show you the documentation
for white-box testing, how to create the document, how it looks like and also what should be
there inside the document. So, like before we will have a cover page which will mention the
purpose of that document like here it is mentioned that it is a testing document for business

management software.

Also, there is this version information, version 1.1, date of creation of this document like
before we have seen, the creators, the place of creation and some additional information like
who was the supervisor, who supervise the document creation that is the cover page like we
have seen in the earlier case studies.

(Refer Slide Time: 03:02)

Contents

Ravizion History [

1 Imiroduction
L1 Purpsss
I Daooumanl o kons.
LB Projeci Scope

2 Mapping bebwesn DFD and tunciions
11 mModds

24 3
- 1] 3

3 Choosing Thres impamar Fursstions -]

4 Blck Box Tesling Report 4
4.1 loginlserhcoent fusctie 4
4.1 searchilocknem lunoios &
A0 eSdselinenDetal fusction

& Whits Box Tesbag 13
%1 loginlserAoount function 10

5.2 sesrchilockinem lundlion 14
3.4 arddlahdnembetal Turctan i

& Canclusion i

Rafarences 12

In the next page as usual, we will have the table of contents. In this particular testing
document, the document contains some revision history, then an introductory section which
includes purpose, conventions scope, all this information that we have seen already in the
earlier documents. Then one section on mapping between DFD and function. So, this testing
document actually makes it easier for the reader to understand the functions that have been

used in this system.

And how those functions were obtained from the system design document that is the DFT. So
according to this document, this whole system contains 5 modules module 1, 2, 3, 4, 5 and
each module contains several functions so that mapping is shown in this section, mapping
between DFD and functions. Then it has one section on choosing three important functions.

So, this section of course is optional.

And this is only used to demonstrate the idea because showing all the details of all the
functions and test report for all the functions would have lengthened the document without
adding any extra pedagogical value. So here instead, what we have chosen to do is basically
focus on three important functions and so how those three functions were used to perform

white-box testing and also black-box testing in this test report.

So next section contains a report on black-box testing for those three functions and the
subsequent section contains a report on white-box testing for those three functions. Earlier of
course we have seen black-box testing, so we will not spend much time on this black-box
testing report part and we will focus on the white-box testing report. The document ends with
a conclusion section followed by a set of references.

(Refer Slide Time: 05:10)

Revision History

l'.-'\'l.' Listw | Sgasan Por Changes ‘Weruon

17517 | Cir i s Li

. = Ll] -
1| 917 | Remarks from [& Final Edics | L1

The next page contains some revision history as before. So, it records the historical evolution
of the document, first person when it was created, then when it was revised and second
person was created and so on. In this particular case, there were only two versions, so those
two were recorded here. But in a typical situation, there may be many more such versions, so
this history will contain all details about all those versions.

(Refer Slide Time: 05:41)

1. Introduction

14 F'IJI'FIME

Thvit puirposd of tistisg for th Busives banegiesanl Sofwans b 10 wentily al dedbens eistng
in Eha il em. Howsresr, swen allsr wtilicbaily canfying ouf The Witing phise, it A nol poidlbs
o guarsnies that the wiwane iL emor fres. Testing does expoie many defects sdsting in ihe
ayilar

1.2 Document Conventions

oL Defisitinn

Now, that is followed by the introduction section. Since we have already seen in the earlier

documents how the introduction section should be created, so we will skip the details here,

only we will mention what are the subsections namely purpose, purpose of this document,

then conventions that are used in the document, scope of the project all these details should

be mentioned here in this introduction section as we have seen in the earlier case study

reports.

(Refer Slide Time: 06:13)

2. Mapping between DFD and functions

* ol]

nodule] 1 — voud createNew Ao ound] S g, vserEananl. Strame
password)

modidel 2 —s void loganUiserAccoumt S weerEmail String pesssasond
oy 3

falel 3.0 — v

- eeosch = vend Formgrod Passwordi Streng worserE man b
m moskalel 3 3 — void setMNew Passorond Saning usexEsnasl, it
OTP. Strs DWW PRS- o

= beolmleX

[v T P | = Last-<CHy Siock R ecord s vaerw S kiwise)
] = Db SacckRocond searchSooc kil nene Strang e na™ amee

& Nbedlale®

To better understand the

m pmoshale 22— void updaielbemalDeindw{Sirng e o e
Stmnpnewitemn, Semmp prace)
w meosdale? 33— varid deletel e String | neresanes)
mnodiale2 4 —= Last-2Oiy PurchaseData - vaenPurc baseLasn)
= mooadileZ 5 s voul epsda te Pasrchiscee e s Strang shemni s ool quescoiiny b
ool 3 1 vod sddSaldiemDetal Sireg stem ™Nasne. e cuusshiryd
St | z— Sales Hecord e SalesRecord Stnmg
team aane Dat L
mnedidle® 3 — vaoud addPurchasedii=n Seran g bemSamme . s
paantity, boodean pa e Siaius)

system, let us first quickly have a look at the second section that is

mapping between DFD and functions. It will give us some idea of what this system is all

about and what are the functions that are part of the system. In other words, it will give us

some idea on the overall complexity of the system. So, as we have seen in the table of

contents part there are 5 modules for this system.

Module 1 contains 3 submodules as shown here. Module 1.1 is a function create new account.
Module 1.2 is another function login user account and module 1.3 has sub submodules 1.3.1,
1.3.2, 1.3.3. Now 1.3.1 1s a function change password, 3.2 is another function forgot
password and 3.3 is a third function set new password. As you can see, each module and
submodule is mapped to a function. So, that is about module 1 primarily related to login and

setting, resetting of passwords.

Then module 2 contains 5 submodules. Module 2.1 is the view stock data, module 2.2 is
search stock items, module 2.3 contains 3 sub modules; 2.3.1 add new item, 2.3.2 update item
and 2.3.3 void delete item. Module 2.4 is purchase list and module 2.5 is update purchase list.
As you can see from this module, this overall system is related to management of a business

that means whatever items are bought, sold, entered into stock.

All these things can be done with the software essentially this is a kind of ERP software
which allows someone to run business smoothly. So, the first module is related to logging
into the software, second module is related to the details about the stock items. Module 3
contains 4 submodules, 3.1 is add sold items, 3.2 is view sales record, module 3.3 is add
purchased item, 3.4 is view purchase record.

(Refer Slide Time: 08:49)

o mnodule § 4 e Last<Oibj Parne hars e s oeds>
e P hace B ecord StringisemnMarne, Diwte dase)

= hledlamle ¥

moduled 1 — voud sddRecorsl Strng custosner M me
anpwovEnl o e e)
2 el T e wonc gt e FLevorrel] S TP CTLSToeTser P A st
irpib o e]
mnoduled 5 — voud diel A S g o Warme, ink
o e)
= mnoduled 4 = ObjCEsioneerfecoed sesschFocond Siring casioaeeriame|
moduled. 5 — Lase-<Oh Debitfecond - showDwebiRecond(

= Tuboddmle S

mnoditleS 1 —= veond createNew Ensployee (S trmngy srmpiloyee N ome

StringfathersPiame. @ dge, Strin g phoneimb-rr, Sonsg sddness)
= modules 2 — void delete Emplosves String employes Mame)

ncdule S 5 — v xk L 1 lanced String:

employeemne bool=mm artendanc S s

mmodile S A —= Lrs oA Hendances Repaort

e A e e Foee crull St perpl e e B)

3. Choosing hree Important Fanctiomns

W have welerted following Hoes fimctioes cormepeomchng b Hares ot
IOt mSec sy Of oUr Sy Denm Sor oosde Destirg

1. Mgl Ferfuesoun

T searchGtockitens

3 el ol e T e tnil O

Rirasem for clhocmang aboyve memmionsd Fmctons
1. logimUserAccsant fismcson logs im the nser oo the
wysterm s homme page It = smportnt s the mser neoeds b
logme Eo=t i order 1o access the sylenr So ot a fequent
wve carse fumctuom of our systena Adso 2l w oogportaol Sor
secuminy ol ElresaolTumre

Then Module 4 contains 5 submodules, 4.1 is add record, 4.2 is update record, 4.3 is delete
record, 4.4 is search record and 4.5 is show debt record. And finally module 5 contains 4

submodules; 5.1 is create new employee, 5.2 is delete employee, 5.3 is mark employee

attendance, 5.4 view attendance record. So essentially, this software allows us to log in, to

maintain details about the employee including their attendance.

To keep track of the items that are sold, that are purchased, in short everything that a business
requires to keep track of. So, these are the modules and each module contains several
submodules. Some of the submodules contain further submodules as we have seen and each
of these submodule or sub submodule or a module is mapped to a function as listed in this

section. Now, you can see that there are a large number of such functions.

The purpose of this lecture is just to demonstrate how to create a test report. So, there to keep
things simple what we have done is we have chosen three of the important functions and for
those three functions, we have created the testing report. So, what are those three functions?
Login user account, search stock item and add sold item detail. Also, there is some
justification given for why these three functions are considered to be important and

emphasized for creating the report but that is irrelevant for our purpose.

So, these three functions as you can see are highlighted here. In module 1 we have this login
user account function. In module 2 we have search stock item function and in module 3 we
have this adds sold item detail function. So, login user account is basically a function which
we get when we map module 1.2. Search stock item is a function which we get when we map

module 2.2. And module 3.1 is mapped to add sold item details.

And also in this function as you can see the function login user account does not return
anything and it takes as input user email id and password. Search stock item take as input
item name and returns the stock details or the records for that particular item. Add sold item
detail function takes as input item name and the quantity and returns nothing. So, these are
the three functions that we have chosen for further elaboration of the case study.

(Refer Slide Time: 12:02)

AN O TSR HEFLIL UL LU BE SPLILACLE BLL BT WY LN UL T LA Y T
ey arerequired. Also for the Desting, we kave sdded soms peoonding of ouy
implemented applor enxse. We e inplemented sll those above mentioned
basic featmres im our app

4, Black Box Testing Report

4. leginl serAccount Punciion
The equivalence classes for the fonction sae the leal level classes showm m
the below figure -

St of ol npufa
(el easmnad)

w +) ¥
| Hpgeieid ol | |I.|1ll|:|l|.l|m Bl mvaikd Ernad
43
X
| [| Fecaracd 1" assasrc
Equivalenge classcs: Valnd Passweord, Invalid Passwonts, Unregistered Emul,

andlinvmled Emeal (emasls withost @gmeal com wffix)
How selecting one representatnee valee from each equrvallence class, we bave the
required

a

So, there is black box testing report which is part of this testing report document. Of course,
we have seen a case study on black box testing earlier, so we will not spend time on this
black box testing here, only just to recollect in black box testing what we require is
identification of equivalence classes which have been done here. And then based on the

equivalence classes, so test suit needs to be created.

So for each of the functions, equivalence classes were identified like for login user account
function these are the equivalence classes, correct password, incorrect password, unregistered
email, invalid email.

(Refer Slide Time: 12:42)

et of test suts {{{iypaat], output’y}

JiCek i g com, 1 23456TEA10GE), hansPage), {(ek i grol com
12345678001}, bopnFasded), ({vovelid poonl com, O1#), kopmnFaled),
{Cedovmmanl cone. 237, kopinkbasled)]

by Wali palyeis -
The boumscdary values Dor et Bactzon are nol defmed as we are ool using
Azl ennemts wilke comganson based om oyl

" . ~
{0 0ok] o, 1234536TERI0E], honmPagel, (el poroel com,
12345678901), bopnFaled), (vovel ¥ pmal com, 01, kognFabed),
(Celdmemil comy, 237), kopinFasled))

11 o

Y ouwhsbe Loy~ httpe: wonty b K8 Tyl 1 LK

And correspondingly some test cases were created to form the test suit.

(Refer Slide Time: 12:48)

T bty vadues fior thes femetron see oot defmed as e are @0l nsing
SEdTEnents with comgarison based om et

A 13 (TR T F U]
A Lo paeen el coen, 1:'141E.Tagll:bﬁ‘f]_1|nlu-rﬂgt: ek & gerea sl oo,
185678901), eEpminFasled) ((vovelof@ el comn, O kognFaled),
ilelc¥mal cone,. 2371, lognFasled)]

Tt =t 1:-
Imput: ok pmasl comm 1T 3I4SETH1IOERT
Exgpeecied Cumpun: homesPage
Sven s TRl - B e el

Test swut 2-
Impot: ek proail com. 12585875901
Enpescted Cusrpu Loggin Faeled ol e ie
Sawirms Cnetprat. Login Faued Rfencage

Test amt 5:-
[l wrarl o proaae] comn 016
Engpescted Cuarpan- Login Faled Rl e
Srwiems Dutpul. Login Faled Riessage

=]
rr--xn-lszrr-i.n:cml =

In this particular function case, no boundary cases have been considered.

(Refer Slide Time: 12:55)

Test wmt 4=
Eagrut: ekl comn., 23
Eagected Cnuppuat Loy Fasled Sl e e
Syukems Curpur Login Faded Bicssige

4.2 searchSeos kil tean N tion
The e valence classes are the beal bevel classes shovwen o e beloror figime -

Sa of adl inpauts

RN Frealoest PRt brrsmiat Prrostcs Paaeres |

Eauivalenes clazuzs: “alsd Product Mames (Brodact slready coested by dhe
mmer) andlnsalsd Produoct Meame (Product not cremted by the nses)
Selectmg one represmatnce sahs fom esch eqovalence class, we Bave the

e fectsuate s orurpes]
H{ipen, StosekDwia),. (cloasr Ermoe)}
ot Conssder pen s soomesd in tiee datairacses as s perodiecr and chasr e ot

Bougdag= % aliee Sapgabreje - Thee bowmsdary vadues for thes e tson aee mof defaned
as e are Dol usng statemnents with compariacm based oo gt

Orvernll] Tess Suive For Fiasceion:-

ACpen, StockDwtal. (cliasr, D¥o Pecord hsssaga]]

Neoasraly Toiggh:~ Bargrs o seppanabeg onn shegrs he MTo™rPoi dTeamue—share
Tese seml 1=

Eagescted Cmsrpon
P e]
Orarpart- StockDhutm

However, four search stock item function equivalence classes were mentioned, valid product
names and invalid product names as well as boundary value analysis was done.

(Refer Slide Time: 13:06)

Test vt 2

ut: chawr

Engected Cutpul We Breosd MevageSyulem
Ormtput: Mo Revord Mesaape

4.3 addsabiltemDetail Danction
The equinmlence classes are the keaf level classes showm im the below figure

it ol il e
] = 4
>
guivalence classes: CumreniSiock = Quani by, OwreniSiock < Omandiby,

rumanirty <= Jand Iovalid Proshsct Fanmes

Selecting one representatnee value from each equvalence class, we kave the
resquared fesd suafe] Cimput), oatpast])]

TiCrooehyeiste -1, Gl snecsage]), ({pooalinpacte, T SI00ecs sressagne], [boadhipaste
S0, il mnessage), ((eotipeste, 0, fail message), ((mble, 27, sl messape]]

Niote soothoaste 1= o vabd product name with svarlsble st 30 and table 1
And same is true for the third function that is add sold item detail. However, we will not
spend time on this as we have already covered it in detail in earlier lectures.
(Refer Slide Time: 13:21)

5.White Box Testing:-

5.1: loginUserAccount function

void loginUserAccount()

ng email = emailTextView.getText() .toString();

password = yrdTextView. getText () . toString ()

f (TextUtils.isEmpty(email)) {

Toast.makeText (getApplicat

So, we will directly go to the next section that is white box testing that is section number 5 in
the test document. So, in white box testing, what we are supposed to do? We are supposed to
first go through the structure of the code, so it is a structural analysis. So, we need to know
the internal structure, then that structure has to be converted to a CFG for analysis of the code

and identification of test cases.

So, let us first see the code for the first function that is login user account function. This is the
function, as you can see each line of code is marked with some number like first declaration

statement like 1 is a line of code, 2 is another line of code, then you have 3 another line of

code. So, the comment parts are not given any line number as you can see here. Also the
insignificant parts were not given line number such as the private void login user account, the

function name is not given any line number.

The opening this is not given any line number. So only the significant parts of the code are
generally assigned line numbers for further analysis. So, you should not give line numbers to
function name, base, comments these types of things. So line number 1 is one line of code, 2
is another line of code, then 3 is if statement, 4 is the body inside the if statement, 5 is a
return statement. Note here again that this base, the closing base for the if statement is not
given any line number.

(Refer Slide Time: 15:12)

t.LENGTH

thEmailAndPassword (email, passwordlf

The 6 is another if statement, 7 is the body inside the if statement, 8 is return statement, then
9 another piece of code, 10 is if statement, 11 is the body inside if statement, 12 is another
statement inside the body, 13 is again another statement inside the body.

(Refer Slide Time: 15:37)

(task.isSuccesstul ())

Toast makeText (getApplicationContext (),

THGTH LONG)

finish():

Tonst.makeText (getApplicationContaxt () ,

Toa FNGTH LONG)

The 14 is another statement inside the body of if, then 15 is one more statement and the last
brace is given a statement line number 16. So, here the rule is of course not followed that
should not assign any line number to the braces because this is the end of the code. So, one
exception is made here to keep things clear.

(Refer Slide Time: 16:05)

Coptrol Flow Craply.-

{ o e 2 o

F Y
{ & a

X
(5) 1
) e
x_ T
gD I
X
- (10}
3
(1)
£ L
(12) (15)
¥
(13)
x
(14)

e
— 16

Now, from this code, we have to create a CFG or control flow graph for visualization of the
flow of the code and then based on that visualization, we have to identify linearly
independent paths for path coverage testing. So, there are 16 lines of codes in the function.
So, correspondingly we can make a CFG following the convention as you can see here. So,

this is the control flow graph for the function that we have just seen.

So, this graph contains several node, 1 followed by 2, followed by 3. Since 3 is an if
statement, so from 3 there are other paths, one goes to 4, one goes to 4 followed by 5 and
then comes out at 16 that is the end of the code. Now at 6, there is another if statement, so
two more paths 9 followed by 10 or 7, 8 followed by 16. At 10, there is one more if statement
so again two more paths followed by 11, 12, 13, 14 or it can go to 15 and eventually they can
come to 16 that is the end of the code.

Now, in order to understand how many test cases we require, we need to perform cyclomatic
complexity analysis for this code. If you may recollect, so it shows how many linearly
independent paths are there. So, the cyclomatic complexity is basically E —V + 2 where E is
the number of edges, V is the number of nodes or vertices. In this CFG we have E as 18, V as
16, you can count it from this CFG the number of edges and number of vertices. Then C is E

—-V+2or4.

Now, 4 indicates that there are 4 linearly independent paths. So, what are those paths? 1, 2, 3,
4, 5 followed by 16 of course, then 1, 2, 3, 6, 7, 8 and 16, at the end it should come 16. Then
1,2,3,6,9, 10, 11, 12, 13, 14, 16 that is 1, 2, 3, 6, 9, 10, 11, 12, 13, 14, 16. So, this path as
shown here is another linearly independent path and then 1, 2, 3, 6, 9, 10, 15, 16 so the other
path, So, these are the 4 linearly independent paths that we can have from the CFG.

Corresponding to each path, we have to then design a test case so that each of these paths are
tested and then that will give us a path coverage testing. So, we have to have at least 4 test
cases to cover the 4 paths. Now, the test cases can be like the ones shown here. In the first
two tests, the first path we can have one input as byte string followed by some invalid email
ID. Then to test the second path thatis 1, 2, 3, 6, 7, 8 and 16 we can have another test case as

shown here.

To test the third path 1, 2, 3, 6, 9, 10, 11, 12, 13, 14, 16. we can have this third test case as
shown here and to follow the fourth path and perform a testing for the fourth part that is 1, 2,

3,6,9,10, 15, 16 we can have the fourth test case as mentioned here.

(Refer Slide Time: 20:15)

1] =

Y onube Lanlk: - hiiges ol b S W n I Ect SR E

Test sut 1:-

It 123256 TEC 105G e
Expected Omopwi- enter emnil imessnpe
Sywtem Cepurt- soter smadl neessapes

Test st 2=
Imput: k& gpanasl oo
Expradne | ranl: EINTET Pk s wel st s -
Syt Crubpast - enber passasond e ssage

Test suat 3=
Imput: ek & gl comn .
1 XFASSTES IR =
E xpecoed Cruspar: hoanepa e
Syt Crcpurn- homespage
Test sunt 3=
Impror: elc @ gaail. coan . 123450
Expecrsd COnurpaar: logim failed fiessape

Systom CFukput: logan faaled message

So, in the first case we have input a blank and invalid email id, then expected output is enter
email message, system output is enter email message. So, here note that each of these are
called a test case, not test suit, so there is some typo here, it should be called test case 1, test
case 2, test case 3 and test case 4. Together these 4 test cases will comprise a test suit. And
for each of these test cases, we have so the input, expected output and during testing we got

some output that is the system output.

Now, whenever there is a match, then so the test was successfully performed, whenever there
1s a mismatch so there is some problem in the code and we need to refine it. So those points
are marked. Those test cases where the system failed to produce the expected output are
marked. So, in this document you are supposed to provide the input, the expected output as
well as the system generated output as shown in these cases.

(Refer Slide Time: 21:22)

5.2: searchStockItem function

void searchStockItem() |

string stockMame fieldStockName.getText () . toString() ;

(TextUtils.isEmpty (s 2 K|

Toast.makeText (getApplicationContext(),

Toast.LENGTH LONG)

.show() ;

db.collection(": k) .document

docRef . get () .addOnSuccessListener (documentSnapshot {

Let us move to the next function that is search stock item function. So, here as you can see
like before, we have provided line numbers to each significant line of code. So, there are 1, 2,
3,4,5,6.

(Refer Slide Time: 21:51)

k stocks = documentSmapshot.toObject(Stock.class);
if(stocks ! && stocks.getStockName () .equals (stockName)) {
textStockName.setText (String.format (
stocks.getStockQuantity()));

11 textStockPrice.setText (String.format(

stocks.getStockPrice()));
}

t.makeText (getApplicationContext (),

+ stockName +

Toast.LENGTH_LONG) .show () ;

7, 8,9, 10, 11, 12, 13. So there are thirteen 13 lines of codes. That means there will be 13
nodes in the CFG. Let us see the CFG how it looks.
(Refer Slide Time: 22:07)

rE

@
./'Y"'.,
(]
P Cvelomatic complexiry: -
(5) (3) E=14.V=13C=E-V+2=3
1 L
® @ roublesnme.
l_ L. 1—2—*3—»4—+]3
/'?j I]2 +5 5T B0 0] 1
J'.,‘ 312 +5 46T +E+12+13
——{ 8
€} outputl:-
T L. (I enter stock nmne message)
6113:1 2. (pen. StockData)
L i 3. (chair. No Record Message)
G2 3
Q1)
13}

L

(

So, as you can see here, there are 13 nodes in the CFG. The 1 followed by, 2 now at 2 there is
an if statement, so there are two paths. One path goes to the node 5, other path goes to the
node 3 that is a third line of code, from 3 it goes to 4 and then comes to the end of the code
that is 13. The other path goes to line number 5, then line number 6, then line number 7, then

line number 8, 8 is another if statement, so two more paths.

One path goes to line number 12 and comes to the end of the program or code and the other
path goes to line number 9, 10, 11 and then comes to the last line of the code that is 13. So,
here number of edges is 14 and number of vertices or nodes is 13. So, the cyclomatic
complexity is E — V + 2 that is 3. So, there are 3 linearly independent paths possible. What
are those paths? One is the path 1 followed by 2 followed by 3 followed by 4 followed by 13
that is 1 followed by 2 followed by 3, 4 and 13.

Then second is 1, 2, 5, 6, 7, 8, 9, 10, 11, 13 that is this path 1, 2, 5,6, 7, 8, 9, 10, 11, 13. And
the third one is 1, 2, 5, 6, 7, 8, 12. Since there are 3 linearly independent paths that means at
least 3 test cases are required together they will constitute a test suit. So in this case for the
second function for white box testing, we require a test suit comprising at least 3 test cases

each corresponding to one of the linearly independent paths in the CFG.

The three test cases are shown here. So, for first path 1, 2, 3, 4, 13 the test case is blank, enter
stock name message. For second path 1,2, 5,6, 7, 8,9, 10, 11, 13 input is pen, output is stock
data. Third path 1, 2, 5, 6, 7, 8, 12, 13. input is chair, output is no record message.

(Refer Slide Time: 24:49)

gt =

Youiube Link:- hitps:\ voumbe com/shoris Y 4y TNed 2 Uge Meature=share

Test st 1:-
Inpue
ExpectedOutput:sto
ck dataSystem
Output: stock data

Test s 2:-
TInput: pen
Expected Outpur: No Record Message

Svstem Cutput: No Record Message

Test suit 3:-
Input: chair
Expected Output: No Record Message -
System Cutput: No Record Message
Like before, so expected output is mentioned. Expected output is stock data, system output is
stock data in the first case. In the second case, expected output is no record message, system
output is no record message. In the third case, expected output is no record message, system

output is no record message. So, all the details are mentioned.

(Refer Slide Time: 25:15)

tAmount | newia

Intent (AddSoldiRecord . this,
suntManagement .«

Toast .makeText (gethpplication

+ stoa

Similarly, we come to the third function that is add sold item detail. Like before we assign
line numbers to each piece of code, each line of code that is of significance. So, just to repeat
we do not assign numbers to the function name or the brace or the comments, we assign it to
significant line of codes. And one exception is the last base or closing base of the entire

function maybe assigned a line of code to indicate the end of the program.

(Video Starts: 25:58) So, here we have 1, 2, 3,4, 5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32. (Video Ends: 26:22) Total 32
numbered lines in the code that means in the CFG there should be 32 nodes. Let us see the
CFG or the control flow graph. (Video Starts: 26:35) So, it is a pretty big one because there

are large number of nodes and as you can see we start with node 1, 2, 3.

And at 3 we have if statement, so there are 2 paths, one goes to 6, one goes to 4, 4 followed
by 5 and then it comes to the end of the program at 31. Then we have from 3 we can take
another path that is 6. At 6 there is one more if statement, so 2 more paths, one goes to 7, 8
followed by the end of the program, other one is 6 followed by 9 followed by 10, 11, 12. At
12, one more if statement, so two more paths, one goes to 13, other goes to 31 and it comes to

the end at 32.

So, this last statement should be 32, last node marking. Last ode level should be 32 instead of
31, there is a typo. Then from 12, we can also come to 13, 14, 15, 16, 17, 18, 19, 20, 21, 22.
At 22, there is one more if statement, so 2 more paths, one goes to 23 and one comes to the
end node that is 32. So, 23 followed by 24, 25, 26, 27, 28, 29, 30 and 32 that is the other path
which can be taken from node number 22. (Video Ends: 28:10)

So, there are so many branches as you can see in this CFG which indicates that the code is
relatively complex compared to the other codes that we have seen.

(Refer Slide Time: 28:22)

1. 1=+2=+3—+d—5—+32
2. 1 *2—*3—6—*T—>8—32
3. 1234620 10—+11—+12—+13—+14—+15—+16—+1T—+18—+19—20
=222 23— 24 25262 T 2E 20— 30—32
4. 1=*2—e3—sG—rG=—>]=2]] —*]2-+]3+]4-*]5-+]6-+]1T—+]|8—+]19—+20
+21—+221—+32
5. 1 =236 9— 00—] 1 —+12—*3]—32
I
y E*;] sujte fp]' :,'a!'h lﬂ!h EIJI.]E!!I 2L it
L ((. 1) enter stock name message)
2. ((toothpaste,), enfer stock quantity message)
3. ((roothpaste, 2), success message)
4. ((toothpaste, 0), fail message)
5

5. ((rable, 27, fail message)

d ";-]j“a'-
Youtube Link:- hittps:(voum be/'ciGAOIVSBuk

Test suit 1:-

Input: | 1

So far this how many linearly independent paths are there. So we will apply the formula, we
have edge 34, vertices 32, so we will have 34 — 32. So here we have edge 34, vertices 32 and
the complexity it should be 4, so there are some typos, in this case we have edge 35, vertices
32 and cyclomatic complexity will be 35 — 32 + 2 that is 5. So 5 means there are 5 linearly

independent paths.

So the 5 possible paths are 1, 2, 3,4, 5,32;1,2,3,6,7,8,32;1,2,3,6,9, 10, 11, 12 so on up
to 32; 1,2, 3,6,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 32 and the fifth one is 1,
2,3,6,9,10, 11, 12, 31, 32. Since there are 5 such paths, so we will have at least 5 test cases
comprising our test suite to perform white box testing for this particular function. So, the 5

test cases as shown here.

First test case for the first path that is 1, 2, 3, 4, 5, 32. Then second test case for the second
path 1, 2, 3, 6, 7, 8, 32. Third test case for the third path 1, 2, 3, 6,9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 8, 9, 30, 32. Fourth one is fourth path that is 1,
2,3,6,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 32 and the fifty one is for the fifth
path thatis 1,2, 3,6,9, 10, 11, 12, 31, 32.

So, these are the minimum 5 test cases that are required one each for each of the linearly
independent paths. So, this minimum 5 we require to perform our white box testing. We can
have more as we have noted earlier, but at least 5 are required to create our test suit.

(Refer Slide Time: 31:01)

Possible Paths are:-
1. 1—+2—+3—+4—25—=32
2. 123G+ T—+g—+32

3.1—+2—3—+6—9—10—+11—*12—]13—*]14—+15—+16—+1T7—+18—+19—20

—+2]—+22—+23 2425 262728 —+29—30—+32

4. 1—+2—=3—=5—+9—10—11—+12—+13—+14—+]15—16—1T—+18—19—20
—+2] —+22—32
5. 1—22—3—+5—+0—=]10—11—+]12—3]1—*32
Test supte for each path Goput, outpat): -
1. {{ . 1) enter stock name message)

2. ((roothpaste.). enfer stock quantity message)
3. ((woothpaste. I). success mressage)

4. ((toothpaste, 0), fail message)

5. ((table, 2}. fail message)

ink:-- https-“voutu be/'ciGAQIVSBuk

Test st 1:-
Input: . 1
Expected Ourput: enter stock name message

System Outpuf: enter stock name message

Test st 2:-
Input: toothpaste.
Expected Ourpur: enfer stock quantify message
System Output: enter stock quantity message

And like before for each of these test cases, again here ignore the typo it should be test case
1, test case 2, each of these test cases we provide the input, provide the expected output and
we also provide the system output. So, whatever we achieve after providing this input to the
program and the system generated output. If there is a match that means the test succeeds, if
there is a mismatch between the expected output and the system output then that test fails that
means there is some issue with the code.

(Refer Slide Time: 31:40)

Test suit 3:=
Input: toothpaste, 2
Expected Output: success message

Systermn Output: success message

Test suit 4:-
Tngpuit: toothpaste, O
Expected Output: fail message

Sysrem Onipnt: SUCCass [essos

Test suit 5:-
Input: table, 2
Expected Output: fail message
Systermn Output: fail message

ssl Syt ot Ot “upction IN;

L. ({toothpaste, =1), fail message) ddSoldltemDetail

So, in our case we can see here that in case of test case 4 there is a mismatch. So, expected
output is a fail message, whereas the system given output is success message. So, there is
some issue with this piece of code, we need to take corrective action. So, among the 3
functions, we have seen that when we performed white box testing with the test cases,

identify it with the help of CFG and the cyclomatic complexity analysis.

In one case, we encountered a problem that is the expected output and the system generated
output did not match. That means there is some issue with the code and we need to address
that issue that is the idea behind this testing. So, the failed test case needs to be recorded in
the document itself so that later on modifications can take place.

(Refer Slide Time: 32:47)

6, Conclusion

So, with that we come to the conclusion of this document. Here we mentioned what we have
found out and what can be done, like that one test case there was a failure, so that particular
function needs to be corrected, to take care of that failure, these typse of things you can write
in the conclusion.

(Refer Slide Time: 33:19)

7. References

[1] Software Requirement Specification for Smdent Activity Monitor and Alert
Genera- tor Version 1.2, Dated: 16/2/2017

[2] Android Developer Reference
https://developer.android.com/reference’ packages htil Google 2017

[3] Wodejs Docwnentation hrps:/nodejs.orglapi’ v7.8.0
[1] Share Latex Leam Documentation |||r]1_-. www sharelatex. comyleam
[5] Stack Owverflow Forum hiips://stackoverflow com

[6] Activity - Android https://devgloper.android com/reference/android/app
Activity hitml

[7] Socket Client API Reference lirtps:// github.com/socketio/socket.
io-client-java

[8] Socker Server API Reference hitps://socket. io/docs/server-api

[9] Sensors Reference - Android hitps://developer.android. com/gmide topics
sensors/sensors_overview himl

And finally, the document ends with some references that were used to create this particular
document. So, that is in summary what should be there in a test report. So, earlier we have
seen several such reports, namely review-based testing report, black box testing report and in
this lecture, we have seen white box testing reports. The common format we have seen. So,
there will be a cover page followed by develop content followed by some sections which are

common. And then we record the actual testing details.

I hope you enjoyed the lecture and you have understood the things that needs to be mentioned
while you create a report. Remember that this is only one of several documentations that are
part of this execution of the interactive software development lifecycle for better
maintainability and refinement of the overall system. That is all for this lecture. Looking

forward to meet you all in the next lecture. Thank you and goodbye.

