
Design and Implementation of Human – Computer Interfaces
Prof. Dr. Samit Bhattacharya

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture: 28
Code Testing Basics

Hello and welcome to the NPTEL MOOCS course on design and implementation of human

computer interfaces lecture number 25 where we are going to continue our discussion on

implementation and testing. So, let us first quickly have a look at what we have covered. So, far

and where we stand.

(Refer Slide Time: 01:02)

So, we are discussing the interactive system development life cycle it consists of several stages

among those stages we have already covered some stages and currently continuing discussion on

some other stages and in future also we are going to cover the remaining stages. So, which are

the stages that we have covered. So, far let us have a quick look. So, we have covered

requirement gathering analysis and specification stage then we have covered design stage

prototyping stage, early evaluation of the prototyping stage.

Now this design prototype evaluation cycle is primarily meant for interface design keeping

usability in focus. So, we have covered all the three substages of this cycle for interface design.

Subsequently we covered design of the system or code design. Then we discussed in the previous



lecture the coding and implementation stage where we learned about coding practices what we

should do what we should avoid while writing a program.

So, currently we are going to pay our attention to the code testing stage which is our topic of this

lecture.

(Refer Slide Time: 02:29)

So, what is code testing first of all why we need testing as the name suggests testing means we

need to test the code but why. So, primarily there are three reasons for testing our code first is to

know if the code is written with proper syntax why that is required. So, that we can compile the

code and create the executable program. So, essentially we need to check for syntactical

correctness of the code.

Secondly we need code testing to know if the code performs what it is mean to perform. So, it

produces the expected outcome after execution that means we need to test whether the code is

logically accurate it does what we want it to do. There is another reason which is equally

important that is we need to go for code testing to know if the code follows convention. So, that

others can understand and maintain the code.

Now this is very important not only syntactical and semantical correctness we also need to test

code specifically keeping in mind the maintainability of the code. Others can understand the



code others can modify the code in summary others can maintain the code this is required to

implement a team effort and for that also we need to go for testing of the code.

(Refer Slide Time: 04:11)

So, once we know the reasons the next thing that comes to our mind is how we can test our code

keeping in mind these three objectives. First one is syntactical correctness how we can check for

syntax of the code whether the code syntax is correct or not whether we have written the code

correctly or not. That is simple generally that is the most simple part of code testing. We rely on

the compilers which typically comes in built with the integrated development environments.

I think most of you have probably already used such IDEs and the inbuilt compiler to check for

syntactical correctness of your code.

(Refer Slide Time: 04:58)



The other two testing situations namely testing for logical correctness and testing for

compatibility with convention our IDEs or the inbuilt compilers cannot be of any help. These

two are generally more difficult to test and more complex in nature and there are actually several

methods to take care of these two types of testing. So, let us have a quick look at different testing

methods.

(Refer Slide Time: 05:35)

Now there are two broad categories of methods one is review based code testing other one is

execution based code testing. So, whenever we are talking of code testing our primary emphasis

is for testing of logical correctness and testing of conventions whether the code is following the



conventions. Now to do that we can apply any of the several methods available broadly all the

testing methods can be divided into two categories one is review based testing one is execution

based testing.

(Refer Slide Time: 06:24)

Let us first start our understanding with the review based code testing.

(Refer Slide Time: 06:27)

Now review based testing’s are relatively less rigorous but they are also quick methods for

testing of your code. So, although they are not very rigorous but they can be used to test code

quickly generally such testing are carried out after a module or an unit is successfully compiled



and all syntax errors are eliminated. So, once you implement an unit or module and compiled it

and found out that there are no syntactical errors then we can go for review based code testing

for that particular module.

(Refer Slide Time: 07:22)

Now review based testing offers a cost effective strategy for reduction in coding errors and

production of high quality code. Of course that is the ultimate objective of any testing method

that we identify errors address them and produce high quality code. Now review based testing

provides a cost effective way of doing the same thing it produces high quality code to some

extent with methods that can be applied quickly and with less cost.

(Refer Slide Time: 08:02)



So, review based testing also can be done in different ways broadly there are two ways one is

code inspection which is somewhat similar to heuristic evaluation that we have earlier seen

during our discussion on evaluation of prototypes remember there we mentioned that heuristic

evaluation is a kind of checklist type evaluation where we tick from a list after checking the

prototype.

Similarly code inspection is kind of similar method where we have a set of predetermined things

to check and we take the code and go through it and see whether the things that are there in our

list in our checklist are satisfied in the code or not. So, here in code inspection method there will

be an evaluation team just like heuristic evaluation for prototypes team members will check the

code for violation of coding standards.

So, we have a checklist of standards to be followed while writing a code and the team members

goes through the code and see if there are any violations.

(Refer Slide Time: 09:29)



The other method is code walkthrough again this is similar to the cognitive walkthrough method

that we have seen or discussed earlier in the context of evaluation of prototypes. So, in case of

code walkthrough again there will be an evaluation team each team member will manually

execute the code this is often called hand execution I think many of us probably have done that

during our code writing practices.

And the team members will do that for some test cases which are to be representative test cases

to identify logical errors. So, like cognitive walkthrough there are some usage scenario which we

call test cases which ideally should be representative test cases just like in the case of cognitive

walk through. And those test cases will consist of input and output the members of the evaluation

team will hand execute or manually execute the code for the given input and see what output is

getting produced and will compare with the desired output.

And see whether there is any problem with the two outputs whether they are matching or not to

find out if there exist any logical error in the code.

(Refer Slide Time: 11:04)



These are broadly two ways to go for testing of code in other words we review the code in case

of inspection primary objective is to check if the code follows the standards. And in case of code

walkthrough primary objective is to check if there are any logical errors with respect to some

representative test cases. So, how these methods help these are quick methods similar to the

prototype evaluation methods namely heuristic evaluation and cognitive walkthrough these

methods can also be applied in a relatively quick way.

So, eventually they help us save development time of course they are not rigorous methods. So,

after applying these methods it may happen. In fact it is quite likely to happen that some errors

are still there which we could not detect through these methods but idea is that we identify as

many errors as possible with this quick method. So, that the quality of the code improves. Code

inspection helps to conform to good coding practices which in turn helps in maintainability and

portability of the code.

These are very important achievements when we are looking for team effort. Code walkthrough

on the other hand allows the developers to quickly identify logical errors of course some errors

may still be missed because it is not possible for a complex system to come up with all possible

test cases. But if the test cases are chosen carefully if they are representative then major points

where logical errors can happen major areas of the code can be quickly identified. So, that is all

about review based code testing.



(Refer Slide Time: 13:16)

The other type of code testing is execution based testing. Unlike review based where we

primarily go through the code manually and do the testing in execution based that is not the case.

(Refer Slide Time: 13:31)

So, review based testing is somewhat informal they are primarily meant to evaluate the codes

qualitatively that is 100% true for inspection based method but partly true for walk through

based method. Although in walk through also one of the objectives is to identify violation of

coding standards along with logical errors. So, if we are performing review based testing they

may not be able to give us all possible errors.



So, such type of testing’s are good for early evaluation similar to prototype evaluation and

testing. Now that early evaluation helps us to clean up the code before more rigorous and formal

testing is done. So, eventually we have to go for some somewhat rigorous and formal testing but

before that we can apply the code review methods to kind of preprocess the code and clean up

some important errors.

(Refer Slide Time: 14:46)

Now the formal or rigorous testing consists of providing the program a set of test inputs which

popularly is known as test cases and then observing the behaviour of the program in other words

the output primarily. So, these are the things that we generally do with more rigorous and formal

program testing methods.

(Refer Slide Time: 15:21)



If the program or the code fails to behave as expected that means the output that it generates is

not the same as the output that is expected for a given input the conditions or the inputs under

which failure occurs are noted for letter debugging and correction that is the way to go for more

rigorous and formal program testing. So, before we learn about the formal testing methods let us

quickly learn about the terminologies that we are going to use in the subsequent part of the

lecture and subsequent lectures.

(Refer Slide Time: 16:08)

First term is test case this is a very common term that we are going to use throughout this lecture

and the next lecture a test case can be considered to be a triplet I, S and O. So, here I stands for



the input data S stands for the state of the system at the time of providing input data and O stands

for the expected output. So, that is the meaning of the triplet and this triplet is popularly called a

test case. However for simplicity in subsequent discussion we will consider only the doublet I

and O.

So, we will not generally consider S that will unnecessarily complicate the discussion without

adding much value. So, we generally consider the doublet I and O to be representing the test

case.

(Refer Slide Time: 17:12)

Closely related to the term test case is the term test suit. Now a test suit refers to a set of all test

cases with which a given software is to be tested. So, generally we test a program or a software

with a set of test cases rather than a single test case. Now this entire set is popularly called a test

suit.

(Refer Slide Time: 17:40)



So, what is the aim of testing to identify all defects or problems in a software product but is that

feasible is that viable.

(Refer Slide Time: 17:51)

In practice it is generally not possible to guarantee that a software is completely error free after

testing. No matter whatever way we try no matter whatever method we apply it is a practically

impossible to guarantee that after testing we will be able to identify all possible errors and we

will be able to rectify all possible errors that is not a practical way to think of testing. Instead

what we can do is something different.



But before that why it is not possible because input data domain that means the set of values that

can act as input for most of the real life software products are generally very large in size. So, the

possible set of inputs is very very large in most of the practical systems then it is not practical to

test a software exhaustively with respect to each and every possible input because that will

consume huge amount of time if at all we managed to do that.

(Refer Slide Time: 19:14)

Now a logical question can be if it is not possible to test everything and it is not possible to

identify all possible errors then what is the purpose of formal testing review based testing would

have been sufficient why to go for testing at all.

(Refer Slide Time: 19:33)



We have to look at this problem from a different point of view it is not binary that either we test

and find out everything or we do not test rather our objective should be we test to find out major

problems knowing very well that some of the problems may still escape our attention. However

our objective should be to identify all major problems. So, testing does expose many rather most

defects which are the important ones if done properly and systematically.

Now these two are very important. So, we cannot go for testing with random test cases and

randomly created test suits rather we have to adopt a very appropriate method which has to be

carried out in a very systematic manner. So, that we are able to identify the important problems

or important defects with the system that is our goal rather than identifying all possible defects.

In that way it is more practical to reduce important defects in a system and that in turn is likely to

increase confidence in a developed system.

So, if we do not do testing then the end users or the clients may not have the confidence of using

the system in real life situations and there may always be a thinking that the system may fail

because we have never tested it. On the other hand if we test it and identify important issues then

at least we know where it can fail and we can rectify for those scenarios which are likely to be

the most important and most frequent ones.



For some minor issues there can always be some bugs which we can always fix later. We have to

always keep in mind that it is not possible to come up with a perfect system that does not exist

whatever software we develop we have to have this knowledge that there will always be some

bugs even at the end of a very rigorous testing phase. So, the key thing here is that we need to go

for a proper method with systematic application of the method to identify the major defects that

are most important ones.

(Refer Slide Time: 22:05)

Now exhaustive testing is impractical because possible input data values are likely to be

extremely large or infinite. Then we must design test suit that is of reasonable size and can

uncover as many errors existing in the system as possible that is our goal.

(Refer Slide Time: 22:29)



If we select the test cases randomly then they not necessarily contribute to the significance of a

test suit that means they need not detect additional defects not already detected by other test

cases. So, the total number of test cases in a suit not necessarily indicates the testing

effectiveness where effectiveness is defined in terms of identification of major or important

defects in the system.

Large number of test cases selected at random does not guarantee that all or even most of the

errors will be uncovered. So, our objective should not be to go for a set of randomly decided test

cases even if that leads to a very large test suit. Because it is very unlikely that that test suit will

lead to uncovering of errors that are not already detected with a smaller suit or even it will lead

to uncovering of important defects with the system.

(Refer Slide Time: 23:52)



To understand this point let us take one example suppose we have written a code to find the

larger of the two integers. So, the code snippet is given here if x greater than y then max equal to

x else max equal to y. So, if x is greater than y then max equal to x and if x is less than y then

max equal to y. So, this is likely to give us the larger or greater of the two integer values. Now

here instead of y suppose originally it was written as x. So, the code has a simple programming

error.

So, I although y should be the right one but instead while writing the code the programmer has

written else max equal to x as shown here. So, the y is not present. So, this has a simple

programming error. Now how do I identify this error?

(Refer Slide Time: 25:07)



Let us see how we can design test cases to identify this error. Consider a test suit consisting of

two test cases x equal to 3 y equal to 2 that is the input and output is 3. Similarly in the second

test case x equal to 2 y equal to 3 and the output is 3. So, in the I O doublet form we have in each

test case we have the input and the output mentioned. Now with this let us see how we can

identify the programming error that is present there.

If we put x equal to 3 and y equal to 2 then we can see that the output will be 3. So, for the first

case it produces the correct output. For the second case when we have x equal to 2 and y equal to

3 this condition fails it goes to next condition and then it produces 2. So, there is a mismatch

instead of three it produces two. So, here we have a mismatch and then we know that there is

some error once this error is detected we will be able to identify where exactly the error is and

we can rectify it.

(Refer Slide Time: 26:53)



Now let us consider a larger suit consisting of three test cases like before x equal to 3 y equal to 2

output is three x equal to 4 y equal to 3 output is 4 x equal to 5 y equal to 1 output is 5. with this

will it be possible to identify the error. Let us see when x equal to 3 y equal to 2 we get output 3

it matches when x equal to 4 and y equal to 3 again we get output as four it matches. So, we do

not detect any error.

And finally when x equal to 5 and y equal to 1 again we get 5 as output. So, again we do not

detect any error. So, eventually every time with the given input we get the desired output which

is exactly what we want. So, there is no mismatch. So, we conclude that there is no error

although we can see here that there is some error. So, this test suit cannot detect the error

although this test suit is larger in size.

So, larger test suits not necessarily give us a better test suit. So, the moral of the story is if you do

not choose your test cases carefully and create your test suit appropriately then no matter

whether the test suit is larger or not you may not be able to identify the error that means you will

fail in your objective of detecting errors.

(Refer Slide Time: 28:43)



So, the implication is test suit should be carefully designed it should not be decided randomly

that is the implication of this discussion. Now this careful design of test suit requires some

systematic approaches how we can do that. So, that systematic approach can be done in either of

broadly 2 ways functional testing. So, when we are trying to perform a test of a code we need to

systematically design the test cases and apply the testing method.

Now the systematic approach to testing can be done in broadly one of the two ways one way is

functional testing here test cases are designed using only functional specification of the software.

That means without any knowledge of the internal structure in other words suppose we have

written a function at hint 1 in 2 and it returns an int there are some statements and this is the

function. So, when we are testing we designed the test case based on only the definition of the

function that means it takes as input two integers.

And produces as output one integer rather than what is written here inside the body of the

function. So, this body we simply ignore and we test based on the definition of the function one

popular way of going for this type of testing is black box testing. As the name suggests we treat

each function as a black box only the declaration part is considered the internal or structural part

is ignored. So, we simply assume add function to be a black box and what is there inside the box

that means the body of the function is of no consent to us.



In that way we understand the function and with that understanding we create the test cases to

test the function that is black box testing which is a type of functional testing. As opposed to the

black box testing there is another method that is called structural testing. Here we decide the test

cases based on the knowledge of the internal structure of the code. Unlike in case of functional

testing or black box testing here we are concerned about the internal structure that means the

body of the functions and the body of the code.

And based on that knowledge we design the test cases one example is white box testing which is

a kind of structural testing.

(Refer Slide Time: 32:09)

So, in summary we go for testing to uncover errors present in the code testing can be done in

broadly two ways. One is a quick and cost effective way although it is not very rigorous or

formal way that is the review based testing which also can be done in either of the two ways

namely inspection based testing and code walkthrough. These are similar to the heuristic

evaluation and cognitive walkthrough methods that we discussed in the context of prototype

evaluation.

The other testing method is the execution based testing which is more formal and rigorous

testing method with the objective of identifying more and more errors. Now in that case we go

for actual execution of the system. Now there are broadly two ways to do that one is functional



testing one is structural testing. In functional testing we assume that the functions are black

boxes and only the input and output matters accordingly we designed the test cases.

In case of structural testing we design test cases based on the internal structure of the code an

example of functional testing is black box testing. An example of structural testing is white box

testing. In subsequent lectures we shall learn in details about all these testing techniques namely

review based testing black box testing and white box testing.

(Refer Slide Time: 33:54)

Whatever we are discussing in this part of the course you can find from this book fundamentals

of software engineering chapter 10 or software engineering practitioners approach chapters

19-21. Of course there are the things are discussed in much more details than what we are

discussing here but those are useful references where you can enhance your knowledge. I hope

you understood the concepts and enjoyed the topics.

We will continue our discussion on testing in the next lecture looking forward to meet you soon

in the next lecture thank you and good bye.


