Design and Implementation of Human — Computer Interfaces
Prof. Dr. Samit Bhattacharya
Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module No # 05
Lecture No # 26
UML Case Study

Hello and welcome to the NPTEL MOOCs course on design and implementation of human
computer interfaces lecture number 23 where we will discuss about a case study on creating a
design document based on object oriented design approach using UML. In the previous lectures
we have learned about the object oriented design approach we have also gone through the basic
concepts of creating a design using the object-oriented design approach and representing the

design using a language which is UML or unified modeling language.

In this lecture we are going to see a document that is created using UML for a particular system
so the objective of this lecture is to demonstrate how to create a design document? Where we are
using object oriented approach and representing the design using the language UML.

(Refer Slide Time: 01:50)
Game Based Learmimg
Software Designm Docurmearit

Crate - (I

Created I-.'II'

This is about developing a game for learning. So, the name of the system is game based learning
so this is the cover page of the design document this is a software design document with a

creation date mentioned. So ideally the date should be mentioned when the document is created.

And the creators that are created by the name of the designers who have created this design

document. The date need not be a single date instead here it can be a history of fast creation then

revision, then refinement and final document creation date.

So this whole historical phases can be recorded or the first creation date can be recorded ideally
the historical evolution should be recorded in the form of different dates.

(Refer Slide Time: 02:52)

limcle x

EEmE®

T

e
T R e e

B N Sl e e

R EE

i o et Cosmegge

i Sl L i e

(T e s

LR N . s T S e]
E S iiees = de T g T Togew
Bl Ly coerm — Bl Cperem

LE

R L T o T

The cover page is followed by a table of content where different sections that are present in the
document are mentioned as shown here. Introduction, glossary of terms, use cases, class
diagrams, interaction diagram in the form of a sequence diagram and optionally flow chart for
the system. In the introduction if you may recollect earlier also we have seen 1 case study on

SRS document similarly here in the introduction it is desirable that we keep these sections.
(Refer Slide Time: 03:33)

Soitware Design Dyao-cument

1 ENErgeouC TN

1.1 PLiTE=DiaS

! & Brcope ol projecE

General introduction this software design document is a document to provide documentation
which will be used to aid in software development by providing the details for how the software
should be built? Some general statements are written within this design document there are
narrative and graphical documentation of the software design for the project including use case

models sequence diagram class diagram and other supporting requirement information.

This is followed by purpose statements what is the purpose? The purpose of the document is to
provide a description of the design of a system fully enough to allow for software development is
to proceed with an understanding of what is to be built and how it is expected to be built. This
document provides information about touch based user interface which will guide student to
learn different sorting algorithms this is the objective for this particular system that is mentioned

under this purpose section.

This document is intended for both the developers and students or other users of the system.
Scope of project another important section ideally should be there in the design document this
software system will be a virtual game based learning system intended for students wanting to
learn different sorting algorithms. The system will help students learn while playing using touch
based mobile interface a teacher also can use this application as a supplementary for teaching
sorting algorithms. So the introduction section contains the basic objective as well as intended
users for the system.

(Refer Slide Time: 05:27)

Fa el

= TooE S ke g oL S apE Tl
1 s §dts

Lpgepgh, M Bdl BlaGowes Hi Pl

SFa rowd g oo Vimkn oat

Fren R [I B L SHew !

Some references can optionally be mentioned ideally it should be there like tools that are used
for creating the diagrams other sources that are used to create the document these things can be
listed under the reference section as shown here. And there can be an overview of the document
the document is divided into 11 sections with various subsection. The major sections are

introduction, glossary, use cases class diagrams and sequence diagrams.

This is an overview of the whole document which can be there in the introduction section the
next section is the glossary of terms that are used in the subsequent document.

(Refer Slide Time: 06:20)

2. Glossary

1. cube = 3} abyect with numbser engraved on i

2. cube array = kst of 3D objects with numbers engraved on it,
3. bucket = 30 object which can haold number on it

4. bucket array — st of 30 obects which can hold numbers.

6. Main menu = screan containing
|. Play game
2. Manage Seftings
3. Show Leaderboarnd
4. Exit Game

For example in this document there are 5 important terms that are used cube which is a 3D object
with number engraved on it. Cube array list of 3D objects with numbers engraved on each of
these objects. Bucket 3D object which can hold numbers on it. Bucket array list of buckets or 3D
objects which can hold numbers and main menu which is the screen containing these options
play game manage setting show leaderboard and exit games so what each of these mean will be
clear in subsequent part of the document.

(Refer Slide Time: 07:11)

3. Use Cases

Use-Case Model Survey
3.1 Actors
3.1.7 Player
= Information: The student is a user who wants to learn
differant sorting algorithmes using touch based mobile
interface.

3.2 List of Use Cases

3.2.1 Student User Use Cases
1.1 Play Game
1.2 Show LeaderBoard
1.3 Manage Settimgs
1.3 Exit Game

ko ha b

W w
b

Then, comes the main portion of the document namely use cases remember that in object
oriented design we focus on objects. And while representing the design there are 3 major views
that we discussed the use case view, the behavioral view, and the structural view. The use case
view relies on use cases so for this particular application that is game based learning let us see

what are the use cases mentioned in the document?

Actors or player now who is a player a student is a user or player who wants to learn different
sorting algorithms using touch based mobile interface this is how a player is explained in the
design document itself. Now remember that here we are just mentioning student but the same
system can be used by teachers as well so teacher can be another player however in this

particular design document will not cover the design aspects for teacher.

We will focus only on student as users. So if that is the case that is students are the users what are
the use cases for a student play games there are 4 use cases mentioned one is play games, then
leaderboard, manage settings and exit game.

(Refer Slide Time: 08:56)

R
<>
<>

=

The use cases are listed now we have to create the use case diagram if you recollect there are
several components in the diagram namely the stick figure which represents the actor. The
ellipses which represent the use case the system boundary and the lines. So this 4 use cases are
captured in this diagram use case diagram here is the actor represented with the stick figure then
these are the ellipses there are 4 such ellipse play game, manage setting, show leader board, and

exit game.

Note that there need not be any order in which these 4 are placed it can be of any order. Because
this placement does not indicate any; ordering between the different use cases. Now these 4 use

cases are enclosed within this rectangle which represents the whole system for a student user.

(Refer Slide Time: 10:02)

- Y Lo 0oy

341 SeeciEri

1 Flmsy gpam e

LI B R e B Ty Ry R e |

Somemis 1 - Neindirs SegeEr T

I ey - oeale] TTULATY ISR sl
- e e e e T R Y
o m e ST P e e el S
Sy | cdrepior TEwengE e e crmalead massaracelealiseT EneE
e T e S e e L,]
== e Rl e ety ol Rt e
e - Eakact s T s e ol g el T B e e el
Doymelown g Bos prear e ceda ol a sroleaciond ool el @
s Sl e e S el T e i
= vt Bl e e P, TSR TR T i

ppus

adlen g el g e, TRLRT s et R |

RN T

E I T e e
A s s By Tl e s s — e Fees i
P omed s o e g b P B Decid s | oms

TE = - o B, e s el oy T | e e e o o BT
= B PR TE DT SEL el Ee EEs ER T T e
e B Bewe, Cm e s e B e m e

B T - I -] e T NS R
e I S R B

B oy e B oo s e ml e nw g e s B Sl e o e lw cl cmmn
el g ber el B B freemga e

= RECAE S S Sl e P A L S S]
e

- 1 g pabareiion Co-ETTUEE-oT: B Ecmyecs, edeoacs B paceee S e
clorym m mome moe e s oy - e o B o e
R e T B B P i P e Y T e)
e

Next thing is for each use case we are supposed to come up with the main line sequence and if
required alternative sequence. Let us start with the first use case that is play game now in this use
case using this use case the player can start playing the game so that is the use case so for this the
main line sequence how it looks like according to the design proposed. One thing we have to
keep in mind is that this sequence may be different depending on the designer. So whatever the

designer feels that is captured within this sequence it needs not be unique.

So, designer one can have 1 mainline sequence whereas designer 2 can come up with a different
mainline sequence so here in the main line sequence according to this particular design there are
several steps first player or the actor selects the play game option then the system displays
prompt for the player to input name and age. Then the player enters the name and age then the

system displays a message that player profile created successfully.

And, a prompt to choose among; the 4 sorting algorithms insertion sort, selection sort, bubble
sort and radix sort. So, in this game there are these 4 algorithms sorting algorithms using which a
player can learn different sorting algorithms. After that the player selects one of the 4 algorithms
then system displays the pseudo code of the selection algorithm with a start option to decide

when to start playing the game.

Next player launch the pseudo code of the algorithm and press or select start button when ready

to play the game then the system then the system starts the game by generating and displaying a

random set of numbers placed on 3D cubes and setting of the timer. So, there is 1 timer which is
set up at this point player then start playing the game by making the moves swap 2 cubes put a
cube or a set of cubes in a bucket and pick them up back from the bucket as is necessary for the

relevant sorting algorithm.

System then moves the cubes as dictated by the player with a submit button to evaluate the
player's current configuration of the array of numbers when the player finishes making the
moves. Player then selects the submit button when done with making the necessary moves for a
particular iteration. System then evaluates the submitted configuration of that particular iteration
and award points based on the following criteria that is if the submitted configuration is correct

award the player plus 10 points.

If the configuration is incorrect deduct 10 points from the player score and show the player the
correct sequence while also setting the next configuration of the array to the correct sequence.

(Refer Slide Time: 13:26)

13, Phrpsr bees o e thes mreaesn endd §Res oeroTe en s dan e B plae et
et e redereg | sersl maderel Bae broel oo rdeg s el ey o 1R mrroee

L Smbere . Essbod e e sl oo sk e ssesn come b s Uhss s
ENECTE S WS S LD Sy O s Sied oS plais D O SaraE]
el et L gl s Firnal Setet, iy i deed enleys il brds B e crbesdere 0 e
SLoeE S RS e AR DO PR SDOeD. T e e S P T b T B
e b s B e W R e S T

= CRENE DRARE T D bs sl @ Ceire S derel Ui re Dhei comres sl et

e B s Rl Y RS B e R S g Sy e

= B I A P LS e Hhes pimeeess bre e o man e saa

T ey Sl el L heces cpriecres sy

TE | e ¢ H R plaper selecis B reres goerres o b or e ceiu o S st 150 H
et Sk Pl Fies resra o b S e v b i e el 00

L I e e
S S 1 ey PR ETeE wear of Re el ST B BRSO o S O Ll Al s
LT e T e Ry O P TR B Chea s e B O S SN

Eomrarka d m owtenr o 3] ITEEr S
B Srewtmey o ceopanys B essende Sal s orges | erkos rsloe D, ma S
mrrerec T e T Sy o P e B e e e e g s

B R R T =]
1. Flager ;| poesy dhes TR E S TEAF T bar@oey b resdoert thee Couss me i g

T iy et e e sl e e sl Coer g ey e B ol B
STy R a el e DO e ol B ke e 1 T

g T - T =]

T Flagwr | pomas S TASIR L RS besfoorn So sl S coarrmeed s mrec resers. So
ol SRt

T Sy - sarmrbe B Cmr Tl e e reteen B Bhes PESmr wierms e D gl
Ca R W e . S CSe

o e i R R L e s ey

1. Flager - poess thes ERIT™ beaiioe 20 swnd e Cormers] QReees ared s Hres
e

R e o T o e g e e ']

Hre plaper m ncormn

Scwsayig -4 ol mlme TS of P ru e STy

Then player keeps making the moves until the array is sorted as per the player's understanding
and submit the final configuration of the array. Next the system evaluates the final configuration
and awards points using the same criteria as that applied to any other move and display end of
game also calculates the player's final score displays it and enters it into the leaderboard if the

score is among the current top 5 scores.

Then, displays a prompt to allow the player to; choose between the following options new game
to start a new game, main menu to return to the main menu. Player then selects one of the 2
options displayed system then does the following if the player selects the new game option then
return to step 10 if player selects the main menu option return to step 0 or at the beginning of this

sequence that is the main line sequence as per this particular design document.

Now, there are some alternative sequences mentioned as well at step 4 of mainline sequence. The
system displays message user already exists if there exists a user with the input name and then
display a prompt to choose among the 4 sorting algorithms. In another scenario at step 4 of
mainline sequence the system displays the message that some input information has not been

entered the system then displays a prompt to enter the missing value.

Another scenario is at step 13 of mainline sequence here the player selects restart option to
restart the current game and the system restarts the game with the same initial configuration as
that of the current game and move to step 11 of the main line sequence. Another alternative
sequence at the same step 13 can be the player selects the main menu option to end the current
game and return to the main menu. Then in that case system ends the current game and return to

the main menu without calculating player's scores.

Again at step 13 another alternative sequence can be player selects the exit option and the system
ends the current game and exits the application without calculating player score.

(Refer Slide Time: 15:54)

1. Sapmdwan] displays "TIMHE LIF shen e bres ba s eegacbesd oo O fSaodsgh fee Seal

JTHY ESTERE I T ned haae besen recvened Coamp ule e phapers ol secre
btarse< on Bar movws b made bwlose e e s eched sermo ond Srephry £ Than
Srplerym & proed i allces thee playvr 1o oo se Bebeeesan e mkrams opdeema
& “HREMW AR mipai o s peeres gnieg thes oument sorioeg
ol beii o delfiene nd sasge e e of marmibee=rs
- P AT U, oo retiE s e eyl W0 IR P 2 TRE Tl

U Monage Seftings

Usesd WS oS Cacle e DRIwET L3 Maedes el G30Se Srvd e Tes® | S el =5 oo O el
el Queed Saoeareds o see o RN TIO FLAYT ool

Scanariz 1 Manlns Ssqusncs
1 Maryes - melec "SETTIRGS ™ aplon
3. S O dey O SobveeTo convkl res PG ke Beeeeg

&= TRDALMDT ke allcowe e player o adpa st Be games scured e s

- FEL_ESET" - mo ofioee e pol o T aecpuecd thes Qs meae s sanl uares

= HLAW T PLAY | k= et Tee shins e an evkerachss sesearen B ooed
Frive by Do pley e gawrees il Pl GORRDEES ITOAAE S B e e

- SR RAE RS ko rshaes T shinges 1 b0 B e e TrE T
. Plirasi | e bl caes ool L Fous opilicics cirashingss=
4. Ggwhiean o @ P plip et Sebse ks
= SOENDE | s play @ slebed D b ST e sl e S s sl
= L2 L= ey dmpissy & sbder bow o rersEsasTis e e ones
- HOAW TO PLATY™ | Gl O BRIE Ol S-St il eeie [he plased o
rrdnecied o maks morsass an | A eormoll s (b Ee e ores descnbed
moakepE U ol U1 ared o wlt o Bhes e nreg e | lies e o
S Sesd . owims 15 of U dor e maores s S mosdkoss
- TALIF MERLF | remim e playper 20 thee moon mer

Then at step 14 of the main line sequence there can be some alternative sequence the system
displays time up when the timer has reached to 0. Though the final array configuration may not
have been reached at that point then computes the player's final scores based on the moves he
made before the timer is 0 and display it .then displays a prompt to allow the player to choose

between following options new game or main menu.

So, these are some of the alternative sequences that are mentioned for different steps the next use
case 1s manage settings. In this use case the player can manage the game environment variables
such as game music game sounds and see a how to play tutorial. Here the main line sequence is
designed as follows first player selects setting option system then displays a sub menu containing

sound music how to play and main menu options.

Player then selects one of the 4 options system then does the appropriate task depending on the
option selected if sound is selected then displays a slider bar to increase decrease sound. If music
is selected then displays a slider but to increase decrease music. If how to play is selected opens
an interactive session where the player is instructed to make moves as in a normal game and if
main menu is selected returns the player to the main menu.

(Refer Slide Time: 17:28)

U3 how beaderboard

Llare] e i Lasi- e plorasd O Se e ed cesTeeosd dlepl dsnne thes el Tras e B
o e e
-,

Bearaashm 1 0 WU A 5 s e E

1. Fiaswr - eoliesd T F S D BRI oplann
T, Semedvan - mhew e Eaderbc o] - o Emhls conberang e e e socren e a6l
=T n. phepes alnag arth Hhe moems ol e plosgsr b=sarks aach erors Aomarls phrgses

FanTres S0 Sppeds Pl el Sl O ek EdedeiDeld ia
& Flawer | deiieall FASIEN KRERT aplaon
i Sl PR e Ay O [Pl T e TEE TR

U4 : Exis Games:
Lrsergy Brs casee, Tee shngses can o=l om He: game

Sk 1 0 Ml S gk ress
1. Flaser | casie i " Earwa Criena

T Eepdean Aok e pmaw @ hes'sdes b caes o e fhes o pdecad aon
T Flayer | naisct “WE e opken
4. Zymdsn | Morsas e assr ool rom e aspbcsian

S DN SRS Dl e ol ol e Pl o

1. P oy S 1 "5 0" Do
& Spweem o e i ey

The third use case is show leaderboard; here the player can see the leaderboard displaying the top
5 scores of the players. Here there is only 1 mainline sequence that is player selects the
leaderboard option and system displays the leaderboard which is nothing but a table containing
top 5 scores among all games played along with the name of the player besides each score a

single player's name can appear more than once in the leaderboard.

Player then selects main menu option and system returns the player to the main menu so there is
no alternative sequence. And finally exit game so using this the player can exit from the game
here there is a main line sequence which says that player selects exit game option system then
asks user if user is sure to exit the application so there is some confirmatory dialog player selects

yes option and system moves the user out from the application.

Now, there can be an alternative sequence at step 3 that means here player select no option and
system stays in the main menu these are the 4 use cases with mainline and alternative sequences.
Our next task is to create a behavioral view for these use cases. In the behavioral view we have
to identify the objects and create interaction diagram for the objects.

(Refer Slide Time: 19:03)

4. Class Diagram

e O Lo achor e merc]
R 1

Lamar . s

Pt Bucket

Now, that behavioral view will come later before that let us see the structural view with the
classes and the relationship between the classes. This figure shows the structural view these are
the classes evaluator, leaderboard, game, user, cube, bucket, sorting, environment, selection,
bubble, radix, insertion sort these are the class names given now here we are not trying to figure
out whether the class names or the classes or the number of classes are optimum, perfect, good

anything.

So this is just a case study on design of the classes and design of the class diagram which is the
structural view of the system design. So these classes are connected with arrows indicate the kind
of relationship association or aggregation or similar such relationships as we have discussed in
the previous lecture. As you can see different types of notations are used the field symbols here
simple arrows to indicate the type of relationship along with the numerical values indicating the

details of the relationships as discussed in the earlier lectures.

So along with this diagram we also need to show in detail the classes their details namely in
terms of their attributes and member functions that is done separately because in this diagram
everything cannot be shown as that will create a very complex diagram.

(Refer Slide Time: 21:10)

4.1 Game

sormng Sorang
2 T Roe: T

B 9oty (|- User

et ayr()

Wy oetScors(k nleger

W setScorsy)

W s tTrur o |

Ay, ST T T S g

Gy eersarmng Typey

4.1.1 Game —Data members

1. Players

2 Scoore

3 createdAt
4 Sorting

5 dhurateon

4.1.2 Game — Methods

1. getPlayer()
- Parameters = NA
- Retuwmn Valee | Returns an object of the User Class
e Description - getPlayer() method is used to obtan the entire details of the
user whech are assocsated o the obtyect of the GameClass.
* Called By @ method s called in the man programiactivity
= Calls - method calls getMame() and getAge() method of the User Class

So, the class definitions are added separately in the document for example the game class shown
here. So, for this game this is the details having attributes there are 5 attributes or data values and
there are 7 member functions. So that data members are player score created at sorting and
duration whereas methods are get player, set player, get score, set score, set duration get sorting

type and set sorting type.

For each method some more details are given like say for example get player, whether it takes
any argument no argument return value returns an object of the user class description get player
method is used to obtain the entire details of the user which are associated to the object of the
game class called by method is called by the main program or activity. It calls get name and gate

age methods of the user class.

So, all these details are mentioned separately for game class also in the actual definition you can
see the type of data that can be there in the attributes so player is user type data, score integer
type data, created at time data, sorting data, duration another time data.

(Refer Slide Time: 23:16)

2. setPlayer()
» Parameters
o naamee - N lakes name of the Strng type. This is the naemee of e
user who is associated with the game
o e T i takes the age of the user associated with the game. Type is
imeger
- FRetum WValue: wod
- Descrnipison - Thes method is used o sel the player parameters i . name
and age of the player which is associated with the class object
- Called By method s called n the Main program/activity when the game
is instantated.
- Calls - method calls sethame() and setAge{) method of the User Class

3 getScored)

- Parameters | NA I

« Retun Valse Cusrent score / Final score of the game. {(Integer Type)

- Descnptson - This method s used 1o get the value of the cument scone of
thee game wihich is actrve. Il the game has already ended then this is used
to access the final score of the garmme

- Called By @ This method s called in the Main programdactneaty ewveny time
wihen a move s submitted for evaluaton by the player It s also calked by
getTop 10Scores() function of the Leadertoard Class.

- Calls o BA

4 setScore()
- Parsmeters Curment scone (Integer Type) of the game that is been

- et WValee | NA

- Dreescripton = This method is used to set / update the score of the cument
game once either the timer nuns out or the user has submitted a mMowe for
evaluation. This is also used to set the score 1o 0 at the start of the game
e when the GameClass obpect 1s snsianated .

- Called By . This method is called in the main method durnng instantiaton
of the game. Also this is called by evaluateGvenConfig() method of the
Ewvaluator Class..

- Caills. MNA

Similarly for this class other member functions are described in details in terms of parameters,
written value, description called by and calls which are the function that it calls. So, for all such
all functions or all member functions those details are provided.

(Refer Slide Time: 23:37)

5. setDuraton()

* Parmameters hime n seconds (Integer type) This is the macsarmaarm durathon

four wihich the game can contmue .

- FRetum WValee: NA

= Descripthon - This method is used 1o sel the duration of the game. The
DUrateon 1S e macomaem e for wihich the garmve cawn mun. Once the
dJuratson is finished the game will end
Called By: Method is called onby during the instantiation of the game
- Caills - MA

5. getSorting Type{)

- Parameters: MNA

- Retumn Value @ an Object of the Sorting Class

= Descriptson - This method is used to get the sorting type of the game |
wihich in turn contans the data abouwut the pseudocode of the game | walid
configurations, type of sorting(Insertion / Bubble / Bucket / Selection) etc.
associated with the game. This s used to check the valdity of the mowve
by the Evaluator Class.

- Called By Method 1s called i the evaluateGrvenConfig() method of the
Ewaluator Class. Also this is called by the getTop10Score() method of the
LeaderBoard Class.

- Calls : method calls getCubefArmay() method of the Sorting Class to get
the Cube A configuration associated with the game given the game
has rot en-cx’

7. setSorting Type()

« Parameters - object of Sorting Type wihich determines the type of Sorting
is associated with game { as selected by the user)

- Returm Vakse = wosd

= Description - This method sets the sorting type (Insertion § Bucket
4 Bubble /| Selecton) related 1o the game This s done after porornptng to
user aboult the type of algonthm 1o Sekect

- Called By - Method is called in the main programdactivity after making &
prompt 1o the user to sebect the soring type for the game from the list of
Inserton’ Bucket / Bubbile / Selection

- Calls - Metlhod calls setCubefrray() of e Sorting Class

So there are 7 member functions so 7 such set of details are provided.

(Refer Slide Time: 23:47)

4.2 LeaderBoard

LeaderBoard
=2 gamesPlayedTopScore: Game []
5 setNewEntry™)
#3 getTop10Scores(): Game []
#3 clearHistory()

4.2.1 LeaderBoard — Data members

1. top10scoreGames

4.2.2 LeaderBoard — Methods
1. setNewEntry()

= Parameters - object of Game Class , game which have just ended
- Returm Valwe: woid

= Description = This method will first check whether the score of the game
played is among the top 10 (f available) score | f yes then il will stone the
game in the top10ScoreGames data member. If less than 10 games are

awailable then the check will be made among all the available games in
the topl10ScoreGames array. In case of tie priocty will be given to the
GameClass object which was created before

« Called By: This method is called by the Destructor of the GameClass i.e
as soon as the GameClass s about to be destroyed

= Calls - Method calls getSorting Type() . getPlayen) . getScore() method of
the GameClass

Next 1s leaderboard class it has 1 attribute games played top score and it has 3 member functions
set new entry, get top 10 cores and clear history. Like before for each method or member
function the details are provided for example set new entry function parameters objects of game
class game which have just ended return value null or void. Description this method will first

check whether the score of the game played is among the top 10.

If available score if yes then it will store the game in the top 10 score games data member. If less
than 10 games are available then the check will be made among all the available games in the top
10 score games array. In case of tie priority will be given to the game class object which was
created before. So, this summarizes the things that this member function does it is called by the
destructor of the game class. And it calls other functions such as get sorting type get player gate
score method of the game class so the dependencies are clearly specified under the description.

(Refer Slide Time: 25:24)

2 getTop10Scores()

« Parameters | NA

+ Retum Value | lop10ScoreGames (Game Array) i.e. the lop 10 games on
the basis of score

» Description : This method returmns the top 10 scores from all the games
that were played. It is used to update | set the View class when the
showleaderBoard ophon 1S selected.

+» Called By : This method = called by the View Class in the main program /
activity in order to update .

#» Calls - This method calls some of the methods from the View Class fo
update the ListView

3. clearHistory()

Parameters | NA
Retun Value ;| NA

+ Description - It will simply delete all the saved game records by cleanng
the top10ScoreGames array. By doing this the score card will reset,

Called By . This method s called by the main program / activity when the
user selects the clear option from the LeaderBoard View

+ Calls - NA

Similarly, for other member functions of the class similar descriptions are provided for all the

other classes.

(Refer Slide Time: 25:36)

4.3 Cube Class

-
4.3.1 Cube — Data members
1. value
2. color
3. size

4.3.2 Cube — Methods

1. getColon()
- Parameters ~ NA
Retum Vakhse - Colos | Integers Type)

]
i
I
;
;
i
E
§
:
i
:
%
;

rreeded whike nter-changsng n
Calls © MNA

L}

2 setCobor()

FParameters | Color (Integer Type) as defined i the resounce

Retum Valwe @ NA

Descrniptson - It set the color of the cube as spe wihach s

during the starting of the game

- Called By : This method s called in the setCubefrray() method of the
class .

Sorting
- Calls - A

Cube class having 3 attributes and 6 member functions.

(Refer Slide Time: 25:44)

4.4 Bucket

Bucket
e CUDm Ay Cubw []
CE sizer Integer
W gerCubesaray()- Cubs []
W e et T b
. PRSATE(C Ireg
3 setSizel:

4.4.1 Bucket - Data Members:

1. cubelrnray
2. sime

4.4.2 Bucket — Methods

1. getSize()
- Parameters - NA

Retuwm Vakese | Size | Integer Type)

Description - It retums the sioe of the bucket (curment value)

Called By = Thes is called by methods of Inserbon / Selection / Bucket /

Bubbde sort in order to determine the size of the bucket which will be

while inter-changsng it
- Calls - hA

L]

Parameters - Size (Integer Type) of the bucket

- Retum Vakhese - NA

* Descripton It set the size of the bucket as spectied which is needod
during the starting of the game

= Called By : This method is called in the main program / activity (o initialise
the empty buckets of desired sioe

- Caills - NA

Bucket class having 2 attributes and 4 member functions.

(Refer Slide Time: 25:53)

3. gerCulbeArrayi)

- Parameters: MA

* Retuwmn Valwe | Cubve Array (Array of objects of CubeClass)

- Descrniptson - It retums the array of the cube that are present in the green
buckel If here is o cube n the amray then it returns il

- Called By @ This is called by the methods of the Insermion / Bucket sort
classes

- Caills - Method calls the getColon() getSze() getValuwe () method of the
CubeClass.

4 sevCubefarray)

- Pammmeters: cube (an object of the cube class)

- Retwm Vakee o MNA

= Description - It add the cube 1o the already present set of cube(Culbe
Array). If none of the objects are present then the cube ammay s initialsed
with this Cube object.

= Called By: This is called by the methods of the Insertion / Bucket sort
Classes

- Calls - MNA

4.5 Ewvaluator

Evaluator
game: Game []
cumrentiterationCount: Integer
#} evaluateGivenConfig(): Integer

=
=

4.5.1 Evaluator — Data Members

1. game
2. cummentlteratonCount

Evaluator having 2 attributes and 1 member functions.

(Refer Slide Time: 25:58)

4.5.2 Evaluator — Methods

LI S e -

& Farsrsctcr e steceed omest (St geer Typee) cerber rrarees, S shes S Covord
ol B QinTee M Peoigra 10 Callk clafe e COMTec! Coriaur Gtasa & e Do seel
L

B et Ve SOONE MO P S OF SR e (e rTraree<d try M
e IO COmAH | LAt CORTEGR e] Ot TyTe

* Descorpbon The method deicrrenes the posvis player eam once bee
e @ e e SuUte el & o ew ahadtecry T e COTECT O e Sl ey
Canbgpbpfemd Socmrn e soxtersg Pygee fues pheces CCnprol el el o Corillagee alese
Flargeet 5 e el Peoards, depeemuBereD Ok e s 008 Meof P neSese 5
correct

- Called By Methosd m Called @ e e Peograes’ SCirely Doy e Ve class.
S o S e Uy et Eovailsate Daioe Cen e seomesery

® Cats Tres swtfesd calls gerScored]) arcl werS.coned) st of e
L e

4.6 Sorting

Sorting
. A cubeAsray: Cube |)
¥} getCubesrray(): Cube []
#3, setCubeluray()

Sorting having 1 attribute and 2 member functions.

(Refer Slide Time: 26:06)

4.7 Userclass

User
L narme . Strimg
L age: Integer
5, getMName(): String
5 getAge): Stnng
), setAge(
5, setmName()

4.7.1 Userclass — Data Members

1. MName
2 Age

4.7.2 Userclass — Methods

FParameters & wvosd

Retum Value : name (String Type)

Description: it simply retums the name of the Player

Called By . method is called by the getFlayer() method of the GameClass.
and getTop 10Scores() method of the LeaderBoarnd class.

Calls. MNA

Parameters . name (String Type)

Returm Value © wosd

Descriptson © It set the name of the Player associated with the game
Called By : Method is called by the setPlayer() method of the GameClass
Calls = MNA

User class having 2 attributes and 4 member functions.

(Refer Slide Time: 26:11)

3. gethAge()
- Parameters - wosd
Retum Value - age (nteger Type)
Descripton. it simply returms the age of the Player.

and getTop 10Scores () method of the LeaderBoard class

4. sevsge()

Parameters - age (Integer Type)

et Wislue @ wobd

Description It set the age of ihe Player associated with the game

Called By : Method is called by the setPlayer(} method of the GameClass
Calts - NA

LI)

4.8 Environment

Envionment
L SOUnImAGIEmE . Integern
L musicWolurme: Integer
5, getSoundivolume(): Integer
5, SerSoundvolunme()
A, e RAUSICOVOILETYS) INtegeer
Ay, setMUsKCWVolurme|)

4.8.1 Environment — Data Member

1. soundWolurme
2. musicWolurmee

4.8.2 Environment — Methods
1 gelSourthguun‘leU

Farammeters . woid

= Retun Valwe : curment sound lewel { Integer 'rype:

= Descrpton - It retusms the current sound kevel | ks needed n the
Weew Class o Set the value of the shder N Semngs Sechon

- Cailled By - method s called from the BMain Program wisen the
Setngs view S achive

- Calls - MA

Environment having 2 attributes and 4 member functions.

(Refer Slide Time: 26:16)

4.9 Bubble Sort

BubbleSort

gwmuhesu
8}, showPsaudoCoda(): String

4.9.1 Bubble Sort — Data Member
MNA

4.9.2 Bubble Sort — Methods

1 swapPositionOfC ubes()
= Parameters - cubel | cube? (Both of them are obgects
of CubeClass)
- Retunm Vabkoe | wosd

Called By . method is called by the getFlayern() method of the GameClass.

* Descriptions : It swap the positions of the cube in the cube array

of the active game by interchanging the propertses like cobor |
size . value

= Called By . method is called in the main program / actinaty when

the user selects two blocks after by long touch
- Calts - It calls getColor() . getValue() , getSize() . serColor() ,

setSze() , sefWalue() of the cube class | reguired o Swap the

values

2. showPseudoCode()

= Parameters - woad

= Retun Value | psesdoCode (String Type)

e Descriptions | This method will retum the pseudo code of the
Bubble Sort with some examples. This will help the user to
understand the soming algorithm before start of the game_

= Called By : This will called by the View Class . after the user
selects an algonithem bo start the garme with

= Calls © MNA

Bubble chart having 2 member functions only no attribute.
(Refer Slide Time: 26:22)

4.10 InsertionSort

InserthonSort
L) EL bucket: Buchkest
3, PUtnBuCKetFromArray()
3 putinAsTanyF romBuckety)
3 ShinCubePosition()
#3, showPseudoCode() String

4.10.1 InsertionSort — Data Member

1 bucket

4.10.2 InsertionSort — Methods

1. putinBucketF romArray()

FParameters: armayindex (Integers type)

Return Value: WVoed

Drescrpton - This method is used o pul the cube from the cutee
array to the bucket.

Called By: This method is called in the main program / actvity
when the user selects a cube from the cube array and the bucket
using the long towch

Calls - NA

2. putinArrayFromBucket()

Parameters. amayindex (nteger type)

Return Type: woid

Descrption - This method puts the cube from the bucket to the
arrany.

Called By: This method is called in the main program/ activity when
the user selects a bucket followed by cube using a kong towch.
Caills - A

Insertions are having 1 attribute and 4 member functions.

(Refer Slide Time: 26:28)

3. shiftCubePosition()

Parsmeters © ndtialiPosition , finalPositeon

Foeturm Value @ wobd

Drescription @ This will shift the cube from the mitial postion 1o the
final Position gven the final POSMicn is one Mone or kess than the
It oS Itcn

Called By - This is called @ the rmamn program § activity

Calls - MA

4. showPseudoCode()

Parameters - woid

Return Valse = pseudoCode (String Type)

Drescrptions - This method will return the psewdo code of the
Insertion Sort with some exampies. This will help the user 1o
understand the sorting algomhm before start of the game.
Cailled By : This will called by the View Class , after the user
selects an algorithm to start the game with.

Calls - MNA

4.11 SelectionSort

SelectionSort

-gsw%PosuionOfcwesﬂ
gwm;usumg

4.11.1 SelectionSort — Data Member

A

4.11.2 SelectionSort — Methods

Selection sort having 2 member functions no attributes.

(Refer Slide Time: 26:33)

1. swapPostion OFC ubes()

- cubel1 cubel (Both of thern are objects
)
- ot
= Descnipbons | N swap the posions of the culbe n e cube armay
Off the active Game by nterchanging the properses ke color

swe . value

= Called By - method is called in the main program / activity wihen
the user selects two blocks after by lomg touch

- Cal n calls getColor) . getvValue() . getSize() . setColor() .
setSize(), setValue() of the cube class , reqguired to swap the
walues

2. showPseudoCode()

= Parameters : void

- Return Value - pseudoCode (Strng Type)

= Descripons @ This method will retum the pseudo code of the
Selection Sort with some exampiles. This will help the user to
understand the SomMing akgonthm before start of the game

e Called By : Thes will called by the WView Class | after the user
selects an algorithim 1o start the game with

- Calls : NA&

4.12 Radix

RadixSort
=2 bucketAray- Bucket | |
B, MO ToBUCketF nomuan an()
. Move ToArrayF romBucket()
B showP seudoCode() String

4.12.1 Radix — Data Members

1. BucketArray

Radix sort having 1 attribute and 3 member functions. So that gives us a structural view of the
system in terms of classes and their relationships with detailed description for each of the classes
including description of the attributes and description of the member functions. As you can see
this is how we can give the details there can be 1 diagram only mentioning the names of the

classes and their relationship and separate entries for details for each class.

And in the details we have to keep give details of the attributes as well as member functions for
member functions we have to give detailed information regarding its input, output, dependencies
and the algorithm or what it does exactly in the form of description.

(Refer Slide Time: 27:43)

S. Sequence Diagram

5.1 Use Case : Play Game =

The next thing that we should do is we should create a behavioral diagram that mean how the
objects that are instantiation of these classes behave while the system is being executed. That we
can do in terms of sequence diagram which we have learned earlier. So here what we can do is
create sequence diagram for each use cases in terms of objects on top we have mentioned the

object names as you can see here.

So, there are 1, 2, 3, 4, 5, 6, 7 objects for this use case as identified by the designer again these
are not unique diagrams. So, for the same use case a different designer or a team of designers can
choose different sets of objects and accordingly can come up with a different sequence diagram
so there is nothing unique about these diagrams for each object the life span is shown by the

length of the bar that represents the object.

For example, the first object has the maximum lifespan, and then the second object gets created
and destroyed periodically as shown with these individual bars that are true again for the third
object up to this point. The fourth object again optionally gets created and periodically gets
created and destroyed 3 such are there. For fifth object there are 2 such occurrences. Sixth object
gets created and destroyed within this range as shown with this bar. And the seventh object is the
one with list life span gets created once and destroyed as indicated by this particular bar with its
particular position. And the arrows indicate the interaction between the objects when they are
alive with the direction indicating the direction of message passing so this is for play game.

(Refer Slide Time: 30:04)

S .2 Use Case Show Leaderboard

For show leaderboard use case this is the sequence diagram there are 3 objects the first object has
the maximum life span followed by the second object followed by the third object. For use case
manage setting again there are 3 objects first object with maximum life span followed by the
second object which is followed by the third object note that here the objects are created based
on the domain model so we have boundary objects, entity objects and controller objects.

(Refer Slide Time: 30:40)

5.4 Use Case : Eyit Game

And finally we have the exit game use case for which there are 4 objects first one is having the
maximum life span then the second one followed by the third object and the fourth object is
having the least life span. So, what these diagrams indicate is that when this particular use case is
being executed that means when suppose the user is exiting the game or the user is playing the

game.

Then the particular objects belonging to the appropriate classes those get created destroyed as per
the diagram and those interact with each other as per the sequence diagram or as specified in the
sequence diagram. So, these diagrams indicate how the objects that are result of instantiation of
the classes which we have seen in the structural diagram how these objects behave while a

particular use case is being executed.

While we are learning the concepts of UML and the different views and the diagrams we
mentioned that a right way to do is to first identify the use cases for each use cases create this

behavioral diagram. And get the list of objects and then merge them together to come to the

structural diagram however in this design document as you can see that sequence is not followed

instead first the use cases are identified then structural view is created.

And then the behavioral view is created this is also all right it is not that only the first approach
should be followed however it sometimes helps if we first identify the objects and from there
generalize the classes. But it is up to the designer which path to follow whether first use case
then structural followed by behavioral diagrams or first use case diagrams followed by
behavioral diagrams and from there come to the structural diagram both are all right.

(Refer Slide Time: 33:06)

Content of design document

* Use case diagram
* Behavioral diagram

* Structural diagram

So, that is in a nutshell what should be part of the design document when we are creating a
design based on the object oriented design approach and representing it using UML. So, we have
to include the use cases with use case diagram mainline sequence and alternative sequence for
each use case then we have to include the objects and their behavior during run time that is the

behavioral diagram.

We have also to include the structural diagram that is what are the classes and how they are
connected to each other how they are related to each other the particular sequence in which you
are going to include these information in the document is up to you up to the designer that is you
can first have the use cases followed by structural diagram or the class diagram followed by

behavioral diagram.

Or you can have the use case followed by behavioral diagram followed by structural diagram
either is fine optionally at the end of the document for the better understanding of the data flow
in the system you can also include a flowchart as shown here.

(Refer Slide Time: 34:34)

6. Flow Chart for the System

-

Although it is optional and not mandatory so that is how we can conceptualize and create a
design document following object oriented design approach. Earlier we have seen how to create
a design document following the functional approach where we use TDF and entity relationship
diagram. In this case study we have seen how to create a design document where we use object
oriented design and UML as a language to express the design I hope you enjoyed this lecture and
learned how to create such a document looking forward to meet you in the next lecture thank you

and good bye.

