C-Based VLSI Design
Dr. Chandan Karfa
Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 12
Recent Advances in C-Based VLSI Design

Lecture - 42
Introduction to Circuit optimizations

Welcome everyone, in today's class we are going to discuss various digital circuit

optimization techniques.

(Refer Slide Time: 00:59)

Optimizations

* Retiming

* Replication

* Folding

* Clock Gating

* Glitch Minimization

Specifically, in today's class | am going to talk briefly about the optimizations such as
retiming, replication, folding, clock gating and glitch minimization. So, these are the
optimizations that are not exhaustive, but they are very common in most of the
commercial EDA tools. So, | will just talk about the optimizations and their impact in

general in circuits.

So, if you look into this optimization in the EDA tools, specifically they try to optimize
either area, power or timing. Timing in the sense, either latency or throughput or the
clock period. So, there can be various optimizations.So, let us start with this retiming and

before going to that let us see how we represent the circuit. So, circuits in general are

represented as a netlist . So, netlist is basically something you can think about as a

graph.

(Refer Slide Time: 02:03)

Circuit Representation

gates and registers:

Inputs /]

!
Outputs Q/

It is basically a graph where there are a set of inputs there are a set of outputs and inside
the netlist what you have? You have basically the gates, you have registers and some
interconnection units. So, basically those gates and registers can be considered as the

nodes and their data flow among them or the interconnection among them can be

considered as edge. And that is how we usually represent the circuit.

So, usually this netlist is a very common terminology in the context of the circuit
representations or optimizations we talked about.So, as | mentioned you can have this
AND gates OR gates and so on you might have some flip flops; so, and their
interconnections. So, we can represent it just like this. So, then this might come back
here and so on. So, this is a feedback loop and so on. So, this is how we can represent

the circuits.

(Refer Slide Time: 02:58)

Retiming — Timing optimization

* Problem
* Pure combinational optimization can be myapic since relations across register
boundaries are disregarded.

* Solution

* Retiming: Move register (s) so that
* Clock cycle decreases, or number of registers decreases and
* Input-output behavior is preserved

* Peripheral retiming: Combine retiming with combinational optimization

techniques

* Move latches out of the way temporarily
* Optimize larger blocks of combinational logic

So, let us talk about retiming. And, it is primarily used for timing optimizations or to try

to improve the clock period. So, I want to run the circuit at faster clocks. So, let us try to

understand that.

(Refer Slide Time: 03:17)

)

|
\UA\A,S

So, for that let us take this kind of as a simple graph. So, suppose this is the graph and

these are the green nodes are basically combinational units, they can be AND gate they

can be OR gate they can be ADD, they can be anything. So, multiply and so on, XOR

and so on. So, these are the gates.

And how is this clock period determined? The clock period is determined by the
maximum combinational path length so; that means, it is the path between 2 sequential
elements or the path from input to some sequential element or path from a sequential
element to the outputs . So, basically it is a path consisting of only combinational units.

So, there is no sequential element involved in a combinational path.

And how does this determine the clock period? Because say this is 10 nanoseconds say
this is 15 nanosecond this is 15 nanosecond and this is a 30 nanoseconds. So, the total
delay is basically 30 30 30 60, 70 nanoseconds. So, if this is the longest path. So, if you
just assume. So, this is a 5, this is say 25. So, the longest path here you have to

understand that this is one this is the longest path. So, it actually involves all the nodes.

So, what would be the total delay of this node? You can actually understand the delay of
all the nodes basically here. So, which is basically plus 30 which is basically 100
nanosecond. So, you remember here that there are many paths like this is the longest
path which determine the clock period, but there is another path like this, this is one path
which is 30, 70 nanosecond this is another path, this is another path there are many

paths actually here.

So, among all the combinational paths, the path that has maximum delay or the time, I
mean time to execute that particular path, is determined by the clock period. Why?
Because your clock should be long enough ; so, this clock period will be longer enough
to execute that combinational path. You have to complete this execution of this whole

combination within the clock period.

Because whenever the next positive edge clock comes by that time your data should be
ready at this point otherwise the circuit will be unstable, it will not be in a stable state.
So, if I take this particular circuit and since I found that the longest path combinational

path is basically of 100 nanosecond.

So, my clock period should be at least 100 nanoseconds, which is basically 10

megahertz . Basically, it's a nanosecond, 1 by 100 nanoseconds so which is basically 100

megahertz. This is the clock speed. So, this circuit will not run more than 10 megahert

clock.

So, you might do some kind of combinational optimizations here, but it's not possible to
reduce the circuit optimized to under a certain level. So, after certain level combinational
optimizations, whatever I talked about in previous 2 classes may not be applicable here

or may not be able to optimize this combinational circuit further.

So, in that case the retiming comes into picture. So, what does retiming do? It tries to
move the register or the sequential element of the design such a way that it does not
change the functionality of the design it does not change the latency of the design, but it

actually reduces the combinational path length.

So, I will just give you an example. So, in this particular path here what is the latency?
The latency is basically 2 because there are 2 registers involved. So, whatever input you
are going to give here after 2 clocks your output will be ready, but I can see that there is a
longest path it is basically very long which is basically 100 nanosecond. So, what we can

do here | will just clean the circuit a little bit and say, this is 15 this is 15 this is 30. So, |
can see that here. So, this is basically 30 plus 45 50 70. So, this path is actually this

very long.

(Refer Slide Time: 07:52)

So, if I can put the registers at this place. So, instead of this register, I just do not have
this register to say if this register place is here. So, basically I then actually split the paths
into two kinds of. So, this path length is 10 plus 5, 15 plus 25, 40 and this path is 15 plus
30, 45.

So, basically I can actually split the combinational path by half. So, I can see here that it
will not go beyond 50 basically. So, it is kind of I can say this is basically 30 plus 40 or
this is 40 55 basically. So, my clock period can now be 55 nanoseconds, which is almost

double.

So, this is what and if I just move this register to this place, you can see for any path
from input to output my latency will remain 2 although earlier I had only 2 registers |
have now 4 registers. So, the number of registers actually does not determine the latency,
rather the latency is determined by the number of registers in any path; so, the maximum

number of registers that is the latency.

So, here I can clearly see that if I just remove this register and place it here, my latency
will remain 2, but my clock period will almost double. So, this is what retiming does. So,
retiming what it does? It is basically as an optimization method which basically
undertakes the complete circuit and then it actually models it such a way that I am not

going into how this retiming has been implemented. It is a very interesting approach.

But what it does is basically, but you give a certain target clock period, say I say my
target clock period is 60 nanosecond. So, what does it do? It tries to model the problem
in such a way that once this retiming is done it actually places this register here because
if it places the target clock. So, it can achieve the clock period 55 nanoseconds which is

the target clock.

So, retiming is an optimization which basically moves the register in a circuit such a way
that a given target clock period can be achieved. So, you can understand that
combinational optimization sometimes has a limitation because it's just between 2

registers. And you may not be able to do everything.

So, retiming is a very useful optimization and it is actually implementing all EDA tools
which basically does this . So, there are three types of retiming, I would say the first one
is the global retiming where you actually take the complete circuit and you model it and

you give a target clock period.

And then it will actually achieve that particular clock period and if it does not you will
say I am not able to reach this. Say suppose for example, if you try to achieve here 40
nanosecond probably with two registers, it might be difficult, but actually it is possible
because you can move this register backward this register forward and somehow you can

manage it.

So, if if your your target lock period is not achievable, then it will say it is not possible to
achieve that, but if it is possible let us you give you the retimed circuit or the modified
circuit where the circuit functionality remains the same, latency remains the same, but it
achieves the target clock period. This is the first one. The second one is called local

retiming sometimes because this circuit has a million number of gates and retiming is

usually a kind of order of the n cube algorithm.

So, that may be too complex to apply to a complete circuit. But I can always find out a
small part of the circuit where it is actually causing a problem and then I can actually
apply the retiming locally also. So, you can actually kind of divide and conquer kind of

approach also you can apply that you can actually take step by step part of the circuit

to and then apply retiming there.

So, that is the local retiming and the third one is called the peripheral retiming. So, the
peripheral retiming is also interesting because sometimes you can understand that this
combinational optimization cannot apply across registers.There may be some

combinational circuit here in this part, then there may be some registers here and then

there may be again a set of combinational circuits.

(Refer Slide Time: 12:12)

So, basically what am I going to write? So, there is some combinational circuit here then
you have a set of registers, then again some combinational circuit and then set of
registers. So, when you try to apply this combinational circuit, | mean optimizations, you

have to take each combinational block separately.

You have to optimize this, you have to optimize this, you have to optimize this
separately or individually because you cannot do this optimization across the register
because the behavior functionality has a boundary this performance of this

combinational circuit has a boundary this registers.

So, what the periphery retiming does is, basically moves all the registers at the periphery
or the either to the input side or output side and then then the whole combinational
circuit can be considered together and then I can do apply more optimizations and then
once it is optimized, I can actually retime back this register to intermediate place so, that

I can reach the target.

So, this periphery retiming does two things, it first allows applying this combinational
optimization for a larger circuit because otherwise, it is actually a boundary of registers. I
cannot apply the component circuit, but if I just apply peripheral retiming my registers

will be moved to the outside.

So, basically what I am trying to say is that you move this register here, you move this
register here and this is out there. So, now there is no register here, there is no register
here, this is a complete circuit which is a combinational unit. So, I can apply the

combinational unit in this particular part.

And I can apply more optimization because more opportunities will come because of the
bigger circuit. And then you move back this register using the retiming algorithm in the
proper place. So, that your target clock is met . So, these are the three kinds of techniques
and these are all too done for timing minimization. So, now, I just talked about how these
registers have to be moved , but what is the rule? So, how to make sure that we move the

register so that the function will remain the same.

(Refer Slide Time: 14:14)

Retiming (cont.)

* Retiming rules:
* remove one register from each input and add one to each output
* remove one register from each output and add one to each input —

RS SRR

So, for that the basic idea is that whenever there is a node here if you try to move the
registers, the register must be present in all input suppose you want to move this this way
this direction so; that means, you can move the register only if it is available in all the
inputs and once you move you should move them to all outputs. So, this is the retime

circuit.

So, for example, if you have a gate like this and if you have a register here, you cannot

move it here because there is no register at this part. So, this is the then you cannot this

you cannot apply retiming here. Similarly, if you have two registers at the input, you
want to move into output what you are going to do? You have to put them in all outputs,

not only one of the output, then only the functionality remains the same.

So, this is how | can move this to the outside. And similarly if | try to move them back, |
can actually if it is in all output sides | can move them back into input, but if | see this
register is not present here in this particular output then | cannot move them outside. So,

that will change the functionality.

(Refer Slide Time: 15:25)

Retiming

* Process of optimally distributing registers throughout a circuit
* minimize the clock period
* minimize the

7~

So, this is what this retiming and I have an example here which I already kind of
explained. So, now | just try to see how | can apply these rules here. So, suppose | want

to move this register as | mentioned, | have to move it with only one input. So, | can

move it, but | have to meet moving into two output places. So, this is what is done here.

And then say suppose I want to move it further. So, if I try to move it further this one
what will happen? So, it seems this is a single input to this node. So, I have to move it to
both places. So, I can move it into both places . So, this will not be there now anymore.

This is not there, this is a straight line connection.

And now for this node there are two inputs and both have a register, now I can move this
both to the output port. So, if your objective; so, the example I have taken that says
suppose I found that moving this register to this place is important, it is something

needed. So, to do that first [will do this step.

So, it will come here. Now, I cannot move this register here because there is no register
here. So, what do I have to do? Even if I have to move it here I have to move although
this move may not be necessary because I would probably say this path is not a critical

path.

So, this register is not may not be needed, it is not necessary, but because I need to move
this register here first what am I going to do? I am going to move this register to these
two places and then I can take these two registers and move to these places and this is the
resultant circuit this is what this retiming does. So, the way it is done it actually follows
the retiming rules. So, the retiming can also be used for reducing the number of

registers as well, though if your objective is not to. So, if such a circuit is very small, it

does not matter whether.

(Refer Slide Time: 17:20)

Register Minimization by Retiming

\x

So, basically all combinational paths are actually meeting the target clock, but | want to
reduce the number of registers. So, that is also possible because in that case what is
basically happening? So, the number of registers | can move and | can actually reduce
the register. And the basic rule is that, suppose there is a high fanout and if there are

three registers here.

So, the latency of the circuit is one because from the input to output side all paths have
one register whereas, if I just move it to the input side. So, this is a correct one because

all output fanouts have a register. So, | can move this this way and still this is the
resultant circuit has still the latency one, but this circuit is basically better because in
terms of number of registers because here | need 3 registers here | need 1 register, but

the functionality of the both the circuit same.

So, I can actually utilize retiming to reduce the number of registers as well. So, for
example, I have given an example here, suppose I have this case. So, I can actually take
these two, I can move them here. So, if one register is reduced then I can take these two
and I can move it here. So, this is what is done here. So, here I have 6 registers and here [
have 4 registers, but both circuits are actually the same. So, this again can be done using

retiming.

(Refer Slide Time: 18:51)

Optimam

* Add registers - use retiming to find optimal location

:
S

One more application is basically optimal pipelining. So, suppose I want to create a
pipeline design. So, I know this is my circuit and then this circuit basically has to be a
pipeline; that means, you have to add a register layer . So, you have to add pipeline
stages and pipeline stages is nothing, but a kind of set of registers in that particular path

and say these are the delays 10, 13, 16 these are the delays.

So, I can put the registers at the input and then I can set a target clock. So, I can set a
target clock say, 20 nanosecond and then I can ask the retiming I can apply retiming. So,
retiming automatically adds this pipeline in proper places. So, it will do it once one set of

registered place here, it will take one set of registered place here.

And it is basically you can understand that this is not a single step basically first it will
take this register, it will place here the way I mention then it will take it will bring it here,
then it will take these two it will bring it here then it will take this it cannot move it now,
then what is going to do hm? So, these registers are not there. So, the two registers are

like this now.

(Refer Slide Time: 19:59)

Optimam

* Add registers - use retiming to find optimal location

’\ B
<:<g\ % : fﬂovb

So, this register will also come here because once you try to move it here. So, now, these
2 registers are there. So, I can move it here . So, this is the one set of register movements.

So, after moving one set of registers it will look like this and it is not there.

(Refer Slide Time: 20:11)

Optimam

* Add registers - use retiming to find optimal location

PP

o

Then it will take this registers and it can move here and here then it can take this and it
will move it here. This is how it can be done . So, this will result in this circle. So, this is

one pipeline stage. This is one pipeline stage and the delay will be determined by the

maximum of these three delays. This is how this pipelining can also be implemented

using registers. So, these are the many applications of retiming. So, that is why this
retiming is so, important algorithm and it is actually available in all kinds of EDA tools.

So, let us now move on.

(Refer Slide Time: 20:48)

v{eplication
. Routin and delay minimization

* Reduce total wire length for routing

So, another important optimization is called replication. So, it is a very simple, but very
useful optimization. So, it is primarily used for routing congestion. I mean reducing the
routing congestion and delay. So, combinational delay or routing delay rather and also it
basically tries to reduce the total wire length . So, let me try to give an example of what

replication is.

So, suppose there is a node here which is very high fanout see it has say, 1000 fanout.
So, there are so, many 1000 fanouts so; that means, this signal is going to 1000 other
nodes, now think about the scenario that. Now I am going to do the routing and I want to
create the chip, think about this FPGA or say ASIC. So, now I am going to place this

node somewhere.

So, suppose this is your area of the chip. So, since it is going to 1000 different locations,

it has 1000 fanouts. So, my objective will be to put 1000 other nodes near to this place.

So, that the wire length will be reduced. But it is not possible because there are I mean I

cannot put so many things nearby places. So, what can [do?

So, there may be some nodes that will be placed here some will be placed very far
because you cannot place them all in together. So, other nodes will be very far away. So,
these three may be nearby this may be nearby this may be nearby, but this may be here

and so on you can understand that.

So, now, what is going to happen? You can understand here that it actually creates very
long wire. So, then when you do the routing you have to route this particular wire in
through the routing area. So, basically you can understand clearly that it actually
increases the routing length. It will be more and also the congestion will be more,thus
putting pressure on the routing algorithm because you have so many long paths you

have to schedule them or route them.

And also the delay of the path will be more. So, if this particular wire length is more;
obviously, the signal reach from this place will take more time than its reaching from

here to here. So, these are the so, many things will come because of a high fanout node.

So, what I can do now as a solution is this . So, what am I going to do? I have the source
node. I will just say place it here and what I can do? Instead of creating so many long
wires I will replicate the source and I will create some buffer nodes. So, what am I going

to do? I am going to create say another three source node buffer.

So, I just connect them. So, whoever is nearby it and then whoever is long I mean and
then I try to place the other nodes near to the source. So, then the wire length will be less

you can understand. So, [am going to place them here. I am going to place them here.

So, basically I replicate my source into multiple copies, earlier all such wires are long .
So, all such wires are long now. Only a few long wires. So, these are the 3 few wires and
because the other node these are the nodes will be placed too near to this source. These

are the sources. I mean out nodes will be placed to this source and so on.

So, this is what it does. So, earlier say if there are say 700 long wires it is 700 x wire.

Now, I only say three source nodes. So, it is basically three 3 x long nodes and then this

plus this. So, this will always be less than this so, and it. So, basically this is a very

simple optimization the replications | am going to replicate a high fanout node and as a
result it will help me to reduce the total wire length is very much clear that | do not have

many long wires.

I have only very few few long wires and other other nodes which will be nearby to that
source as a result total wire length will be reduced my delay will be less because since
this path is coming here. So, after that this delay will be lesser than the longer wire
length. And the third is basically since the number of long wires is less. So, routing

congestion will also be minimized. So, that is the idea of replication. It is a very simple,

but very powerful optimization to do so, with many advantages.

So, the question here is that I mean I understand that I have to. So, basically I will create
this high fanout node with multiple copies. I will create a buffer for that. But how do I
distribute this node? How do I know that? I have to place this node near to this which
are the nodes I am going to put to this source, which are the nodes I am going to put

under this source which are the nodes I am going to put under this source and so on.

(Refer Slide Time: 25:57)

Replication

+ Replication is used to redistribute the fan-outs of high fan-out source.

+ For a high fan-out source, all of its fan-outs can not be placed in near by
place.

* Routing delay would be high.

Solution:

+ Replicate the source and redistribute the fanout logic.

+ How to club the fan-out?
— Better to keep frack as

« Replication of source may result in another high fan-out source.
- May need to apply recursively.

So, this is something that is a question and basically we can actually keep track of the
hierarchy and the nodes within a hierarchy I can place together I can break them

together.

(Refer Slide Time: 26:09)

Replication

~ EE

([ﬁ> . s1~——@
High fanout :
<\

So, the idea is that if you have a this is a high fanout source node and there are. So, this
is going to say there are 100 connections here, 100 connections here, 100 connections
here, but I know this is another module this is another module and this is another

module. So, when I am going to split them I am going to split them into module wise.

So, what I did I just this is my source node and now I created multiple source three copy
of the source and I just put whatever it is here I am going to put it near to this whatever
the fanouts are here, I am going to put to this source and whatever the fanouts are here |

am going to put it here.

So, this will help to keep the nodes which are basically strongly connected. So,
whenever they are inside the module they are kind of strongly connected and if I place
them together. So, placing them during routing or placement and routing will be easier.
So, that is the basic idea of replication. So, let us move on, the next one is another

interesting and very important optimization which is called folding.

(Refer Slide Time: 27:09)

JI—/oIding ~ Optimization for area

+ Folding is used to reduce the number of hardware functional units by a
factor of N at the expense of increasing computation time by a factor of

So, this is primarily used to optimize the area. So, what is this? Basically if you found in
your data path or in your circuit that there are many repetitive kinds of instances for | just
took an example here that | found there are 4 instances of 2 add-in series. So, it is
basically kind of 4 copies of the same circuit which is basically two adders. So, what
does this folding do? It is to fold this 4 into 1.

So, I am not in the modified circuit. I do not anymore have 4 copies of these two adders
rather [have only one copy of the adder. And then what am | going to do? | am going to
multiplex these inputs to these two adders. So, you can see here this guy is doing a plus
b. So, | am going to say this is not a two adder multiply adder. So, this is basically the

same thing. So, it does not matter what is inside. So, it is basically multiply and add.

So, I can see here that I can use this. For this multiplication, what is happening ? So, it is
basically a I can put this a ¢ e and g into this mux because this is the left input to the
multiplier and the input is basically bd fand h . So, b d fand h I can put into another

multiplexer and I can multiplex this input to this multiplier.

So, I can have a 2 bit signal now so, s 1 s 0 s 1 s 0. So, if it is basically 0 O then say a
into b is going to happen ifitis 0 1 then c into d is going to happen if it is 1 0 then e into
f is going to happen and if it is 1 1 then g into h is going to happen. And similarly after
that this is multiplying with this x 1 x 2 x 3 force. So, | am going to put another MUX

here. So, that this is now going to be when it is basically again this s 1 s 0.

So, effectively when this is 1 and s it is 0 0 is basically this circuit will be executed once
it is 0 1 this circuit will be executed, when it 1s 1 0 this circuit will be executed and this is
1 1 then this circuit is going to execute. So, this is what is folding. So, basically what |

am doing here is really time division multiplexing. | am going to use the circuit for one

copy of the circuit and | am going to multiplex the input, but it is a time division.

So, because one copy of the circuit cannot perform four operations at the same clock. So,
I have to distribute it in 4 clocks. So, earlier this circuit was working in 1 clock because
they are all parallel. This will take 4 clocks because it is basically time division
multiplexing that is happening here. So, | will come back to that and so, if this is for

parallel copies.

(Refer Slide Time: 30:09)

Folding Transformation

ekt a(0) + b(0)
olk2: a(0) + b(0)
olk3: a(1) + b(1)

If the operations are in series, I want to fold them that is also possible. So, what I am
going to do here is that I want to fold these two adders into one. So, | can create that and

then what | can do? | can put b here, a here. So, this is say s and this is also s.

So, in the first clock when it is O, it is going to do b x plus a x . So, this is going to
happen in the next clock when s is equal to 1. | want to perform the result of this a x plus
b x with ¢ x. So, what am | going to do? | am going to give c x here. So, the next clock 1
s is equal to 1 ¢ x will come here and | need a plus b which is computing the previous

clock because it is called calculating the previous clock.

So, I need to store it in some register. So, that is why I put a register here and then I put a
feedback loop here. So, this is actually my a x plus b x.So, when s is equal to 1, then it is
actually calculated this a x plus b x plus c x this is what is going to happen; that means,
in clock 1 a 0 plus b 0 is going to happen so x is something the clock. Next clock a 0, b 0
plus ¢ 0 is going to happen. In the third clock a 1 plus b 1 is going to happen; this is

how | can actually alternate or time division multiplexer things.

So, again you can understand that this circuit is going to work . Only thing is that earlier
it was taking 1 clock to execute this now it is taking 2 clocks earlier it is 1 clock, now it
is 2 clocks. So, this is what is folding transformation. So, EDA tools usually identify
such instances and try to fold them. But one thing is something the question might arise
to you about how I am going to manage this 1 clock versus 2 clock. Because you can see

it here.

So, this is say one module and this input is coming from another module. So, earlier it
was giving in every clock and similarly this output is going to say some other module.
So, these modules have to be synchronized because the initial specification if you think

about this is the module implementation. So, if | implement this here.

So, this module is going to give you the input in every clock and in the next clock the

corresponding output will go to this module. This is how those things, the

synchronization or hand shaking, happen when they know that this is that every clock I
am going to get the next input. And this module also knows every clock will give me the

correct output.

But now in the modified or the folded circuit I can see here that this is actually now
taking 2 clocks. So, it actually changes the kind of the interfacing it also creates the
problem to the interface because now this you have to do some kind of things here also.
So, you have to make this circuit wait for 2 cycles to get the output and input in every 2

clock cycle.

Similarly, for this case the corresponding output circuit has to wait 4 cycles to get the
output, so; that means something has to be changed here. So, which is something very
complex we should avoid. What can I do? I can run this module now say if it is a 2 clock

I can actually run in 2 x clock this is a normal clock 1 x clock.

So, suppose this is running in 100 megahertz this is earlier all modules were running in
100 megahertz now I am going to run it in 200 megahertz. I am assuming this circuit is
replaced by this folded circuit and this is also running in 100 megahertz. What is going to

happen?

Now, it is basically it it is giving the input in 100 megahertz speed and when the next
clock come because this is a 200 megahertz, its 2 clock of this circuit will be done so;
that means, it will actually can produce the output and for this circuit or this circuit
because they are running in 100 megahertz and this is running in double speed they are

going to get this output in every clock.

So, that means, whenever I fold a circuit or the module that I have to run the circuit in,
that folding factors more speed so that the interface will be unchanged. So, they do not
understand whether this circuit was running. I mean for them it is a still running kind of

100 megahertz.

Because earlier also they are sending the input in every clock in the modified circuit also

they are giving they are they should be able to give the input or the output to this module

in every clock because this circuit is running faster. So, when 1 clock, one clock of this

circuit means 2 clocks of this circuit. So, basically the interface will remain unchanged.

(Refer Slide Time: 35:05)

Folding Transformation

* Multiple Fus (Functional Units) are time-multiplexed to a single functional
unit

* |s useful ir{DSP pplication

Basic Steps

+ |dentify common.pattern.su tc.

« Find the folding fact6r N)
+ Replace all the pattern by a single pattern with inputs on time-

multiplexed
+ Create a faster clock N * clk to pperate the folded clk

So, when you do the folding transformations what do you usually we do? We basically
dentify that common pattern and then your fold factor identifies the kind of folding
factor. How many copies are there? You basically create the folding circuit and then run

the folded circuit in N into N clock speed

So, the interface remains unaltered. So, that is the idea.And usually for DSP applications
the folding is something very useful because in DSP there are many such repeated
instances. So, this is about the folding transformations and it is primarily used to reduce

the area of the circuit

(Refer Slide Time: 35:40)

Clock Gating — Dynamic Power consumption

+ Dynamically disable the clock in specific regions that do not need to be
active at particular stages in the data flow.

+ Dynamic power consumption is directly related to the toggling of the
system clock, temporarily stopping the clock in inactive regions of the
design is the most straightforward method of minimizing this type of
power consumption.

RESD) “ Comb DEg Comb D%
Logic Logic
Main Clock D b
as0) ar0) r0)

So, the next one I am going to talk about is clock gating, which is basically used for
dynamic power reduction. So, the basic concept of clock gating is very simple in a circuit

where you have two kinds of power. So, static power and dynamic power and dynamic

power are at a very high level. It basically comes from the toggling of the bit.

So, when your signal goes from 1 to 0 or 0 to 1 the power consumption is more
compared to if it remains from 1 to 1 or 0 to 0 in the next clock . So, when you toggle
the signals in your circuit usually the power consumption increases . So, now, if you
identify so, a circuit is a part of the circuit which you can understand that for say this
circuit is running forever I can know that from say 11 circle to 25 cycle this circuit is not
doing anything useful .So, it is basically kind of the output its produce basically remains

unused.

So, what I can do is, but since the clock is coming the input register is getting modified
and every time you get a new data. So, there is a high chance that some of your signals
get toggle and as a result to this combinational input you have a getting a different

output. So, there will be a toggle and as a result this circuit is consuming more power.

What can I do? I can just get the clock . So, I can have a clock enable. So, this is my
clock signal. What I can do here is I can actually have some controller which will
generate this enable signal 0 for the example I have giving that 11 to 25 that particular

cycle it will give 0 as a result your clock will remain 0.

As a result, what is going to happen? Your content of this register will not change
because you do not get any positive clock . As a result, whatever the previous data it will
contain, this register will contain the same register and the same data . So; that means, I

am actually stopping the toggling.

So, earlier if it is whatever the value in the next clock also has the same value no toggle.
So, the power consumption of this part of the circuit will be less and whenever I want to
activate this I will just put the clock element equal to 1 so that this circuit will work as it

1S.

So, this is basically the very high level concept of clock grating is basically if you
identify that a particular part of the circuit which is basically not happening, it's basically
useful for a large amount of time of the complete execution time. So, I can just use the a
clock enable, basically disable the clock for that part of the circuit for the time when it is
basically ideal .And we should have a controller which basically generates this control

enable signal. Again this is a very simple, but very powerful technique for reducing

dynamic power in a circuit.

(Refer Slide Time: 38:27)

Glitch

+ An electronics glitch or hazard is an undesired transition that occurs

before the signal settles to its intend
« Asignificant portion of the overall power consumption of an RTL design
is due to propagation of glitches nd data parts of the

circuit.

1

B 1

=

So, the last one that I am going to talk about is a glitch. So, let us try to understand what

is a glitch? Glitch is basically a hazard or undesired transition in a circuit. So, let me just
give the example of how the glitch is generated. It is basically generated when for a gate
two inputs are not coming at the same time. So, it's just a some minor timing difference
between these two inputs and that then it will create some glitch at the output . So, let

me give an example for this.

Suppose your x was coming here and suddenly it became 1 . So, then this 1 will come
here and say since there is a gate here let say there is a NOT gate. So, now, earlier this
was 0. So, that is why the NOT gate output is 1 and suddenly it becomes 1. So, it will be
0, but it will reach earlier than this one because it will take some amount of time to make

it 1 to 0. So, this is the timing change.

So, when it becomes 1 it should be 0, but at this moment this becomes 1 and at this
moment it becomes 0.So, this is the period of time when this signal will remain 1. So,
this is 1 and this is also 1 as a result output of the AND gate will be 1. Because 1 and 0
the output of the AND gate will be always 0 because | am giving x and x back to the
AND gate, but because for a very fraction of time both inputs remain 1. So, | am going to

get a glitch here.

So, my result will be like this whenever I change this value of x 2 1 to 0 I will always
get a kind of sign of a glitch.So, this is something that is not changing the functionality of

the circuit, but it is actually the glitch means some power whenever you have a glitch

some power consumption going to happen this is it is kind of a toggling of the value.

So, this this is; obviously, if you have a NAND gate you will not feel this glitch, but if
you think about a there is a AND gate which input is coming directly and there is a big
combinational unit here which is giving the output and the second input the same input is
going to this is a big combinational unit and then it is coming to this input.So, obviously,

there will be some delay for this compared to this.

As a result, there will be some glitches. So, a glitch is something that happens because of
the signal if both the signals do not come from a particular gate at the same time. So, that

is something kind of an undesired behavior and this unnecessary consumption power.

(Refer Slide Time: 41:09)

RTL Transformations for Low Power

« In control-flow intensive designs, the control logic can generate a
sigm at its outputs, which in turn propagate
through the data path to account for a large portion of the glitch power in
the-entire circuit.

«UFor data-flow intensive designs, the chaining of arithmetic functional

units results in majority of dynamic power consumption
+ Reduction of glitching power is achieved primarily by the following
transformations of RTL circuits:
/" ~ Choosing an altemative datapath architecture
- Restructuring of mw control signals
- Clocking of control signals
= Imoghstae] Galeel et

So, for that usually what we do is basically do similar kind of transformations the first

so, for control intensive design if there is a input, say suppose there is a MUX here.

(Refer Slide Time: 41:20)

So, what is going to happen? So, there is a MUX here and so, say suppose this is your
select signal and there is a glitch here . So, suppose this is 0 and 1. So, the actual signal is
0, but suddenly it becomes 1.So, suppose this is also 0 and this is 1 actually what is

going to happen? Because it suddenly becomes 1 you will get a small one at that point

and then it will be 0. So, again it will create a glitch.

So, the point here is that if there is a glitch in the control signal that actually gets
propagated into the data path. Because because of the glitch the wrong input would be
selected for a transit, very fraction of time and as a result that might create some glitch
.So, for the control signal if there is a glitch that gets propagated to the data path and for

the data path when you are chaining an arithmetic unit and then also it actually creates

some kind of glitch.

Because you can think about that if there is a adder here and it is input coming from
adder and a multiplier; obviously, this will come first this will come bit late because it is
basically suppose they are actually input is same so; obviously, there will be some delay

here as a result there will be glitch at the output of the this output of this adder.

So, because of both the cases you can actually have a glitch and there are similar kinds of
optimization that can be done to make sure that this glitch actually can be reduced
further. So, one is basically integrated clock gating to reduce the control signal control
hazard or the control glitch you can actually clock the control signal so that you do not
have glitches. It will be minimized because this control signal will only be 1 when the

clock comes.

You can actually to handle this basically you can restructure the multiplexer network or
you can actually choose alternate data path basically you restructure data paths so that
you have uneven delay for both the inputs . So, these are the kind of techniques that are
being applied to reduce the glitch. And again it is targeted to reduce the power

consumption of the circuit.

So, with this I conclude today's class, again I just try to emphasize that I have taken
very few optimizations. It is very important and it's very well-known and very popular
in all EDA tools there may be many more optimizations. And there may be context
specific optimizations which we we we should learn in detail, but in the scope of this
particular course, I just talk about very few very important optimizations and their

impact in digital circuit .

Thank you.

