C-Based VLSI Design
Dr. Chandan Karfa
Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 10
Verification of High-level Synthesis
Lecture - 35
C to RTL Equivalence Checking for High-Level Synthesis

Welcome everyone. In today’s class, we are going to discuss about C to RTL

equivalence checking for high-level synthesis.

(Refer Slide Time: 01:01)

HLS Flow

CCode

:

I Pre-processing |

:

[Scheduling Phase l

v

| Allocation and Binding Phase |

.

Datapath and control path generation phase |

RTLCode

So, as we already know, this high-level synthesis converts C code into equivalent RTL
code and it goes through various sub-processes like pre-processing, scheduling,

allocation binding, data path and control, and path generation phase right.

(Refer Slide Time: 01:15)

Translation Validation of HLS

Transformed
= ==p Program

Input Program
(Specification)

Implementation

o For each translation thqu':alerE:g oDoes guarantee that
o Does not guarantee ecker (EC) error in translation will

that HLS is bug free o be caught

v

4
Yes May Not

IIT Guwahati

And there are two ways we can verify this process; one is simulation-based verification
and another is a formal method-based verification. So, for formal method-based
verification, we already discussed in last class that this translation validation is

something is very popularly used for high-level synthesis.

And in translation validation, we basically take one input program we run through high-
level synthesis we get an RTL and then we check the equivalence between them right.
And inherently, this equivalence problem is undecidable. So, we cannot have a complete
method. So, which can say yes, no in all cases; yes for equivalence no for non-
equivalence, but the method usually sounds. So, it means whenever it says yes; that
means, it is equivalent and it may not able to detect whether it is equivalent or not right.

So, it will say may not ok. This I have we have already discussed.

(Refer Slide Time: 02:10)

Phase-wise Verification of HLS

Behavioral specification (c,c++)
| 3

L S B T Phasewise verification of HLS
Synthesis tool

RTL (VHDL, Verilog)

And also, we have argued in the last class that, because this C and RTL there is a lot of
semantic gaps they are completely different execution patterns. So, having a direct C to
RTL equivalence checking is a very difficult task right and as a result, most of the

common research targets phase-wise verification of high-level synthesis right.

So, in the sense that you verify the scheduling phase, you verify the allocation and
binding phase you verify the data path and controller generation phase right. So, that we
have already discussed. And in the last class, we have seen the basic equivalence
checking method which basically models the input-output of one phase as FSMD finite

state machine data path.

And then, we define equivalence of FSMDs and then we have seen how we can actually
adapt that equivalence method to verify the phases right. So, that we have already

discussed.

(Refer Slide Time: 03:09)

Cto RTL Equivalence Checking € @fi'

* Need intermediate information from the HLS tool. =7
* May not be available /> "NP 7 (S M)

* End to end verification does not need any intermediate information
from the tool.

Difficult problem due to semantic gap between C and Verilog/Vhdl. &

commerC|a|so|ut| *O .
\Need some sort\Q |Iarreresentat|on KYL

* RTL to C conversion is helpful here
e O o

Now, the point here is that once you try to do a phase-wise verification which actually go
to it basically verifies all the difficulties of every phases. And you can actually point out
the bug that actually occurred in which phase right. The bug might occur in the

scheduling phase which might occur in the allocation phase or so on right.

So, it can pinpoint that, but the disadvantage of the whole process is that you need the
intermediate information right. So, you need the scheduling output right. So, whatever
the scheduling output you need to get that from the tool. You need the all information

after allocation and binding right.

So, which may not be always available. Specifically for commercial tools, this kind of
information in detail may not be available. So, in such a case verifying this phase-wise is
difficult right. On the other hand, C and RTL are the input and output of the program and

is always available.

So, having an end-to-end equivalence checking for high-level synthesis where you have
only the C-code and you have the RTL. There is no intermediate information available
with you is something will be very important and it will be useful ok. So, that is
something we are going to discuss. And we have already discussed that this particular is
a very difficult problem which is checking equivalence between C and RTL; it is a very

difficult problem, because of their semantic pattern right.

So, basically, the way C executes the way this RTL executes is completely different
having this direct equivalence is a difficult process, But why? So, in this particular class,
we are going to discuss if we want to do that what will be a possible way right and what
are the limitations of that method and how we can do that how can improve the

efficiency of the whole process right. So, let us discuss that.

So, the problem statement for today’s class is that you have given a C code you have
given a RTL which is generated by the high-level synthesis tool any high-level synthesis
tool from that input C code. And I want to check whether this C and RTL equivalent or

not right. So, that is the problem statement we want to do.

And; obviously, as I try to argue multiple times the way this c executes the way RTL
executes is completely different. So, having an equivalence checking method basically
the way I just defined like if FSMD based equivalence checking, cannot be directly
applied right, because you cannot have a model of the model of v that Verilog versus the

model of C you cannot compare right. Their execution pattern is different.

So, what is the way out. So, fortunately, in the last-to-last class we have discussed a
converter right RTL to C converter right. So, that we have already discussed. I hope you
remember that. So, specifically, the RTL that is generated by the high-level synthesis
tool has a very specific structure that I have talked about that it has a data path and a

controller.

And just by analyzing the data path for each controller signal is in state controllers, and
assignments, we can extract the operation that is happening in the data path. And this
way the controller FSM converts it into FSMD and our program model is a FSMD right.

So, we have already modeled our input C behavior as FSMD only right.

And now, I am talking about how I can convert that FSM controller FSM into n FSMD.
So, now, these two ICS can be comparable right. So, that something actually this RTL to
C conversion actually gives an opportunity to do an end to end equivalence checking

which is something that does not exist so far.

If you look into the literature at the current moment, there is no such open tools available
there is no commercial solution exists. So, there is no such offering right from industry

or academia. So, the point that I want to argue here is that this C to RTL conversion

actually keeps open the door right. So, you have C code you have an FSMD which we
represent by C code, but say it is basically an FSMD.

So, now we have two FSMD whose 6-execution pattern is exactly the same the
semantics are exactly the same. So, I can now compare right. So, the argument that I try
to make to do a C to RTL equivalence checking you need some sort of similar
representation right. So, a similar representation that I emphasize otherwise, you cannot

compare apple with mango right. So, they are two different things.

So, similarly, we need to differ the same representation, and fortunately, because of this
RTL-to-C conversion I have a similar representation now. So, this RTL to C conversion
is helpful here. And that converts this C that RTL to FSMD right and I have the input C
which we can represent as an FSMD; already we have discussed in the last class. So,

now, I can check the right equivalence. So, that is the way I am going to do ok.

(Refer Slide Time: 08:27)

RTL to C Conversion

Void main(){
intrd, 2,13, rd;
/ q://state label
ri=(r1-r3)xrd;
c=r3<rs;

gotog2;
q2
iffe)f
2= (11 4 13) xrd;
gotoq3;)
else{
2= (r1-r3) xrd;

gotogd;}
/ &

a

So, this RTL-C conversion I have already discussed in the last class that you have this
controller FSM. Just to recap this you have the data path, what I am going to do? In each
state whatever the control assignment, I will analyze the circuit for this, and I will

identify, that because of these control signal values these operations are happening right.

So, I will replace this with this. I am going to do this for all states. I am going to do this

to all states and once I do this is nothing, but my FSMD. And if this particular behavior

has no clock, no reset, no memory nothing this is simple high-level C code right. So, that

is what we have already discussed. So, this we can represent as a C code as well.

So, this actually helps us ok. So, the approach that we are going to take is that we convert
this RTL into an FSMD by this RTL this conversion method that we have already
discussed. And now, we have two behavior which is comparable. Now, I am going to
check what could be the equivalence checking method here. What are the problems here?
Although we have two FSMDs did the same problem that we have solved for scheduling
verification allocation binding verification and so on or it is something different right.

So, let us try to understand that.

(Refer Slide Time: 09:43)

How C and RTL-C look like?

e e

* Inputs and outputs are the same
* Control structures are different

* The internal variables are completely different.
@- Why the path based approaches commonly used for scheduling

verification cannot be applied here?
* Computation/trace level equivalence is the feasible waf unless the co-relation)

among the variables among twe-pragrams are identified:
* Therefore loop must be qf static bound

* |s static loop bound too restrictive i @

So, let us try to understand how the C and RTL-C which is RTL-C is something the C
that is extracted from RTL ok. So, let us try to understand that. And for that, I actually
will see you some a real example that our tool actually generates from a benchmark ok.

So, let me just show you that.

(Refer Slide Time: 10:05)

© fusmis mcccamase ¢ X |4 i ‘ Q) st x|

@ carfa / FastSim Owhe 1 Qw1 Y 3

O cote s Dwk Oseury g o Octe

et commit st on Now 16,220 Hiory

Say I have this GitHub is publicly available. You can go into this FastSim if you just

search FastSim, you will get this GitHub.

(Refer Slide Time: 10:16)

w8

o

, 16, 18, 11, W, 5, 0 e

.

So, let us take a very simple example ok. So, this is a waka example which has this is a
behavior right, this is my input C code ok. So, you can see here there are a lot of
operations which are happening; if-else and it has these are the inputs right. So, there are

32 I mean so, inl to in32. There are certain inputs and there are three outputs ok.

Now, if I run this particular code using Vivado HLS tool, I will get this RTL ok. You can
see here fortunately the inputs are the same right. So, inl to in32 the same inputs. It has
all the same outputs outl3, out30, and out31 right. The only thing it has some valid
signal which is basically say it which time that particular output becomes valid right. So,

that something is there.

So, I can conclude here that the input and output specifications are exactly the same. So,
here, you can see the input variables are t1, t2, t3; these are the temporary variables that
are used in this program right. What about here. It has you have to check the registers

right.

(Refer Slide Time: 11:22)

)

[« [p—

So, you can see here that there are so many registers right and. So, wire is basically an
intermediate signal. We do not have to bother about that. But if you see here, the register

some like reg_361 some t61; you can see here there are many registers.

So, we can see that these internal variables are different. Input-output are same for both
Verilog and RTL, but the intermediate variables are different because here intermediate
variables are the temporary variables of the program and here it is basically the registers

right.

And why I am talking about registers is because if you remember the rewriting method,
we actually rewrite everything in terms of registers right. Finally, in the FSMD this wire

does not exist. Everything will be in terms of registers ok.

(Refer Slide Time: 12:13)

S ————————)

s stk 10) sl

145, 4, 1, 46, 435, 81, 8, 15, 25/t B 0 sttel) B G_start 181 gl

- [

So, now you see here, this is the while I will talk about that. So, this is the FSM
controller FSM right. you can see here that in state 1; if such condition hold, then I will
go to this state otherwise, I will go to this state, and so on. In this state, I am going to do

this. This is my controller FSM the way I just explained right.

(Refer Slide Time: 12:24)

-

And these are the operations that are actually enabled state-wise. For example, if you see
in the state 6, I am going to do this signal equal to 1 right. So, similarly, in this particular
state 3, I am going to do these operations. Here, this is basically a register transfer

operation.

(Refer Slide Time: 12:46)

[P eam—— T ——— B
€rc " e cospimce # @@ (| €9 C @ L s rgmipaay)
¥ master < FastSim / benchmark_examples / Bambu / waka / source ¢ code / hls macc.c Gotofile BB

@ covnam i ot st cor 2 Qey

Al

g LS e B S RS

») 30 b b o Q2 0
il w6 fosttel « S 3T
e, oz s, fot o7, i LG fostes + 5 e)
e L st S A
45, 46, 11, 06, 41, 82, 4, 15, 66t vl w5 Fo sttes < S OV

e L foLsttes S ROV
e et (s AI0SE + B0

iy ot o (il & 85

sian ot o+ (il < s

e s+ e 20505

kg L2500« (e 2t o k)

wian L5+ (A -)
ien S 30052 (S1re 66 - 1))

g A0 5 (L8 o Lo)
ey A (S8 -)

e L5 (30028050 855000

v GOLA035Y (o Lo SI08) o V) AR 831 S0

Ve . (8. 0

i A5

wsign o251 = I+ 2

[[

So, now, from this, I will keep doing rewriting and there is this assignment statement

which is always happening always true right.

(Refer Slide Time: 12:55)

€3 C b gthbeo

ot - Fostim

@ ol koo st ot o 17,200 9 Wty

(Refer Slide Time: 13:03)

115, 4, H, 16, 1, 11, 123, 435, 42/t

[« [

So, I am going to. So, for example, if you search this temp 294 p2. So, let us go here, you
can see here 294 p2. So, it is getting replaced by this right. Then, I have to retake this and

you have to take I will find operation which is basically we will replace this right.

So, this way it will be rewriting operation is happening. So, this is the RTL. It is actually
generated where this assigned statement at the wire assignment is always true and these

are the register transfer operations initiation happening state-wise right.

(Refer Slide Time: 13:28)

8 ckarfa / FastSim Owihs 1 frow 1 Yk 3

OCde Ol N Alquss Qo [lPoss OWH O Seurty 1 bighe

P master + FastSim / benchmark examples /Bambu/ waka/ Gowfie Addfler

¥ kb ot ided s ol 0200 @ity

wia dore

g o T e eIy ol

[« [

So, from this behavior, we are able to generate a C code right.

(Refer Slide Time: 13:33)

0 s x4 i | @ rasmprons g x4 SEs
RN " ’ conpine: % 8§ @ i[€C o8 ¢ caeostime % 8 @
¥ master < FastSim / benchmark examples / Bambu / waka / source.c code / hls mace.c Gotofile

@ cobtsn s ot it ot i o .0 Qe

8 carfa / FastSim Owmhs 1 fsw 1 Yea 3

Rt ; 4 y A S
Ot Ol N Anwes O [roes DWs O Sey L inighs

8 s (0 1) 07 b e D20
P master + FastSim/ benchmark_examples / Bambi / wak / generated ¢ code / Gotofle Add e~
e it 3 Bt A A)t B i S
e, e o s, et e b, 0 o,) 3 iR ok s i Bl
o5, 5,11, 1, 1, 1, 4, 5, 2 e
0 ReaDMEm ‘mation and waka dne 7 months ago.
) vk moton s Tmonbem
o D et e T 50
0 testhench wakac waka & motion added
¢ REAOME ’
ety

4 (1 ¢ o)

o
et -
-

b Tems By Sesuty Sows Oos

¥

‘ Coo Gt Ficrg AN Toig By Aot
ot « 16 o
et satinrort i

s concolFsSnicmses_code

P Typehere o sesrcn

So, this is my generated C code. Let me look into that.

(Refer Slide Time: 13:35)

T e | 0 s mzcam x4 =
crc o % 8@ (| €30 @ canh ot & G O
¥ - Fastim /benchmark ecmplesBambu /vl souce c code /M macce | Gotofle ¥ - Fasti/berchmark examples Bambo /v enented e/ cade b macce | Goto e

@ oo et torn s Oy | | 18] mmp s it o 12D ey
Al contrbutor A2conmovers @ @

s 00) s b @20 1 s (0 i) 13318 o @20

catetan

a, i 40, i 40, e 4, o g
127 ot a2, I 429, St 132, St), S

14, 405 4,0t 05, 4t 7,
o 02, e

e 5, %, 11, e, Gy, 2, B, 5, 08

ntgrs Lo Lorg e ptbntanat
nigs Log Jong ot ettty
r s gt . el
onigrs dog Jong e {nsseinst;
igrs Lo Jovg e Apetat;
styps dog dog e it
lgps o Jog Ut 2ot
algpd Log lng it ndbeloit;
maiged Log long ot el
g Jog long e indenindl;
g Log lovg e bzt
eaigrs dog Long e Sudbntnt;
tgres tog Sog Ut bty
igrs Tog Jng ot rdetnd;
e oo
i
i
+ el
st
enigres Log Log e snidroua
igrs Log Log it cstirout;
sigres Tog Tog e oSt

0w 6+ b /0

s 6 0 gt e
i oot

P Typehere o sesrcn

So, in this code; so, as I mentioned that I am going to define every variable as an
unsigned long int. So, these are the variables and you can see here the inputs are

basically the same inputs.

(Refer Slide Time: 13:51)

And you can see it here. So, many variables have to define

to 0 right.

© st ¢ x|

€rc 8 z dinxce % G @

1 master - FastSim / benchmark_examples / Bambu / waka / source_c_code / his mace.c Gotofile o
@ ol it on ittt o .20 Oy
A1 contributor

35 Hows (38 sloc) 917 byzes owme Q20

96 Mo, e o, o o, It U, L b, I, L, e g
0402, e 424, 0t 02, L 48, k25, Lt A, D vt It e, U

ot 5, 6, 11, 16, 1Y, 2, 42, 15, 06 feorury

E D
Hotmosw fav
ol 404 - 015,/ -t e ¥/
a0 -
it (2 e
e a1 s 6

t
e s 42 /¢
Wy e

e g
e e
s
120t 0 02 /15
)

aseseus (Y
[TEr D
sty 1

o3t e bty /- okt e ¥/
i ettt

P Type here to search

(Refer Slide Time: 13:55)

g e oz s, o o7,

€

©) Fastmiccose s maccc s X

s e

+

- 0>

onlps ko b ot

vl dong Ly Ik

wnlyss Log g int

iy Lo Loog I
i Lo Jo I
g Loy Low I

iy Lo Loy it

vl Log Long it

i

iy g i i

ot

b L pi_towmt;

I Lt

LI
g i
A S tont;

s, Gy O

right and I just initialize them

Htusion
i A2 sl 401, 4 40, 16 42, 1 g, o 47, 0k 8 o 4o, Gt A0, L e, 02k 01, St 4o,
4 o 3, o 42, T 40, 44, ot 4, st £t vt o o)

<
145, 16, 11, 016, 01, 01, 03, 35, 02 ey
Ioan -5
oy e o/
w) ey
LI
s st e
wmomn ra
1 0 s 2 e
et e
o
0 vt g
)
e e
o 0 e ;) okt e
)
Gy [o e
i e
)

P Iype hereto search

) bt mcctrs s X | S
csch ot & Gyl O
P o« FatSim/ bechmak camples/ Bamba /vl /ouce ¢ code /N mkee | Gotofik

@ ookt s s robn e commt sy o 11,200 DMty
At

s (0 s00) 917 tes o e @20

¢

> C

© ettt v X

a1
ot Yo T 4
i T, Yo b
g e o 1
i o
a4
st T Y o0
it Yo Ve 8
gt o o 1
g Yo, gt
gt o o 40
et o, g e
s Tt e
ot o e e
g g e 10
g g T 0

g T, T, 1
g T T 1
e T T 0
g fong g e

o T e o0
s 1o
it e e 00
i T e 50

i e v o0

i T e 00

T et ot 08
0wt o 0t
v

'
e

BTN e
rampy
s
CR
et
o 8
P -

So, these are the all variables that is there in the Verilog. So, we have defined it.

(Refer Slide Time: 14:01)

O s et X | o
ool e s) & O i

P master - Fastsim /

hmark examples / Bambu / waka / sourcec code / s mace. Gotofle

test commit 3t on o 17,2020) History

) 87 e o owme Q20

i, o 2, s, ot o,
o)

Bl A Typetere o search

et « D
LIt + SN Mg

62T 53_tew » U LITES) |
2052t + 2502052 5
200 I5053_tew o U810 I05Y
tpreg 2t taprep 1§
At + L1
10207 52_tewp 1040020 52
5.5 sttt « 06,5 i stted

et thre)
S6Lro N2 tew + 6L re 2§

5.5 states_tem « 0. stted
e e _te » o, eg Mt
S P T
9ty » 1

And this is the behavior. In state 1, I just assign that old to new things that I have already

discussed that what data inconsistency and the these are the operation which happening

in state 1 right.

(Refer Slide Time: 14:09)

coupinace % O @
P st FastSim behmark examples/ Bamba waka/ source < ode /s macc Gowle | o
© om0 e + s +maton Latest commit 37t on Nov 17,2020 O Histry

Attt

3 tows

e 9 4y 0 ¢
U ome e
¢

e 6 [
et ettt el

Ell © Typeere o search

(0 start = 1) B 3 = 1 state) = 1)
a3t o 1) B8 (om0, i stten)

e ((b))

)
S(apatart e 8) 8 (1o .S o staed)
«

wies
)
o w57 m st

)
H(((ostrt = 1) B 2 o 16 sate) = 0
(a0 = 2) 8 (o 0.5 o stte)

¢

i ((W7o i) i)
)

4((strt v 0) B4 (1w 1.5 S stte))

¢

s r

o w051 fm st
)

81

So, under this condition, I am going to states 2. Under this condition, I am going to go to

about state 1 and so on. In the state 2, again old to new assignments new to old

assignments and then, these are the operation is happening right. So, then this is state 3

and so on.

(Refer Slide Time: 14:26)

erc conmmce % G @ 1| €

1 master < Fastim / benchmark examples /Bambu / waka / source.c code / hls mace. Gotofle

@ covnam i ot st o, 20 Qey

ot 45, 45, 411, 16, E18, 82, 1, U5, 26t

O

So, what we have seen here. So, this is my input program which is basically of 30 lines

right.

(Refer Slide Time: 14:31)

s g oy /e
wm oy ia

[« [

Here, let us see the code. It is basically 380 lines. So, you can understand this is
something completely different structure. The variables are different operations are
different control structures are different. So, this is. So, we have to check the equivalence
between this five this code and this code that is the problem statement for us and this is a

very simple code.

I open the smallest test case available to us ok. So, let us now move to the presentation.
So, what we understood from a practical example is this once you have the C and RTL-
C, we have the inputs and outputs are the same right; both have the same input-output

and there the name is also the same. So, that correlation is available to us.

Control structures are different. They get changed due to scheduling and the internal
variables are completely different. So, for the C program, the internal variables are the
variables and for this, this registers right. So, that is something that is the given thing to

us.

Now, if you just remember that for this that path-based equivalence checking method
that we have already discussed in the previous class that we have talked about that this
the basic equivalence one. When we can say two FSMDs are equivalent that when you
say for every trace or every computation of one behavior, there is an equivalent

computation right.

That means you give an input you get a trace one execution trace and you find the
equivalent trace in other behavior and you do for all possible traces right. So, this is n
square kind of comparison. And we argued that, because dynamic loop bound when the
loop bound is not static, it is in input dependent. You might have a very large number of

these traces.

So, that equivalence checking is a difficult problem right. And because of that, we
actually insert cut points right. We break the problem into smaller problems by
introducing cut points in the behavior and then, we identify the path covers. The path

covers is a path between the cut points, not the complete trace.

And then, we come up with an equivalence checking method that actually does not
identify the trace level equivalence but rather path level equivalence for every path of
this path cover, we try to find the equivalent path in the other FSMDs. And since this
path cover is a finite representation. So, this equivalence checking problem becomes
scalable right. And it has the advantage that it can actually handle loops of dynamic
bound right. Now, let us try to see. Here, if I try to do a similar approach and what is the

problem right.

(Refer Slide Time: 17:08)

z’\v
e
(\ ({/ o o |
, L] Atn - M A
\ < i fht ,l/ M«I\'> L] A ./;W)
B

So, say suppose I take a simple example. So, suppose I have a path here. So, this is my

say path 1, where say a =inl + 5 and b = in2 - 6 right and this is my path 2.

Here, I am doing say outl = a + b and out2 = a + 10 right and say this I decided a cut

point right and this is a cut point say. So, these are the say cut points.

So, there are two paths and according to our previous definition, I want to check the
equivalence of this path right. So, I will take this path. Now, let us consider the
corresponding RTL-C behavior. This becomes r1= inl + 5. This becomes 12 = in2 - 6
and there this is out1=rl + r2 and then, out2 = r1 + 10 right this is my RTL-C and this is

my C.

So, now if you try to compare this path with this path. So, what will be the expressions of
outl. Outl = a + b right and out2 = a + 10 right. This is the data transformation and say
there is no condition. And here, what will be the case. It will be r1 + r2 and r1 + 10 right

this is my out 1 and this is my out 2.

Now, problem is that once you try to find this path equivalent to this path, you have to
compare this expression right you have to say the data transformation are equivalent; that
means, this expression <a+b> and this expression <rl+r2> is equivalent. This

expression <1+10> and this expression <r1+10> is equivalent.

But here, I cannot compare, because they are using the intermediate variables a and b
here it is rland r2 and I have no information whether a is r1 or b is r2 or not right. So, I
cannot just compare. So, that is a big problem right. So, the problem is that this cut point-
based method will not work for this, because when you take an intermediate path, my
data transformation or the expressions will be in terms of the intermediate variables and

the intermediate variables are completely different right.

So, I cannot just compare these two paths. So, that will not work, but now let us take the
complete trace. So, this is the trace right. So, this is trace 71 and this is trace 7 2. Now, let
us try to explain x again and try to rewrite outl in terms of inputs right. So, now, the

rewriting will happen. Now, my outl = a+ b, where a=n1+5 and b=in2 - 6.

So, outl= inl + in2 - 1. This is my outl and this out2 =a+10, will be out2 = inl + 15
right. And <r1+r2, r1+10> here, again it will become <in1 + in2 - 1, in1+15>. So, once
you take a trace, I can actually represent my output in terms of the input and constant

right.

So, now I can say these expressions are the same. These expressions and this expression
same. So, I will say take it 71 = 72. So, the point that I try to make here is that for this
problem when we have the C and RTL-C; since my intermediate variables are
completely different. So, I cannot just compare by intermediate paths, because their
expression or representation will be in terms of the intermediate variable and there is no

relation available to us.

On the other hand, when you take a trace; a trace is something the complete path from
the input to output from the start node to the end node right. So, for trace, I can represent
my output in terms of inputs only, because the intermediate variables are not defined
they are always get defined and used. So, they will be replaced by the inputs right. So,
finally, these output expressions will be in terms of the inputs and then I can compare

right.

So, the important point that is very important is that whatever the path-based approach
that we have talked about for phase-based verification, we cannot apply it here , because
the intermediate variables correlation is not available right. So, we cannot just do that.

We have to do that trace level equivalence right.

So, we have seen that to compare to FSMDs, we can say that for every trace there is an
equivalent trace and vice versa right. So, that is something we have to do here. There is
no alternative until we have this correlation is given to somebody. If you give that this
variable r1 is nothing, but a and r2 is nothing, but if this information is available with. I
can replace this with a. I can replace it with this b. I can replay by this and then I can say

this expression is equal to this right.

So, if this relation is available with us, we can actually go for that scalable cut point base
equivalence checking or path-based equivalence checking. Whereas in this particular
problem that is since this I assume that there is no intermediate information is available

this correlation is not available, I have to go for trace level equivalence ok.

So, for that the [FL]; obviously, we have to assume that the loop bounds are static,
because if the loop bound is dynamic I so, then I do not know how many traces are there.
So, this particular if. So, if this bound is not given and if I say this is a integer. So, I have
to run for 2 to the power 32 iterations of the loop right. Or if it is long int, it is 2 to the

power 64 iterations to the long int. So, those many number of traces will be there.

So, we cannot assume that. So, we will assume that the loop bounds are static and it is a
very strict bound that your loops cannot have a dynamic bound. It will always say, i to 10
or i to 100 i to 10000, but it is not i to n, n is an input ok. So, that must be there

otherwise, the number of traces we cannot enumerate right that is the problem.

So, now I try to argue. So, this is the first difficulty that comes with making the C to
RTL equivalence checking. And now, I try to argue whether this static loop bound is
very restrictive for high-level synthesis because we try to do it not for general programs
right. We are not solving the general program equivalence rather we are trying to solve

the equivalence for high-level synthesis.

So, let us try to understand whether this is a too restrictive bound for high-level synthesis
or not. My argument is no, why? If you remember in high-level synthesis, we cannot we
do not support dynamic memory access right dynamic memory allocation we do not

access. So, the malloc calloc; those will not thing is not allocated.

So, the array is basically a fixed bound right. So, any array we cannot have we can just

malloc during the program execution because that dynamic memory allocation does not

support by high-level synthesis right. So, it means that the arrays are of static bound or
fixed size right. Now, usually in the for loops, what we do and this for loops usually
manipulate arrays most of the time right. And if the array is a fixed size, what is the point

of keeping the loop bound dynamic right. So, it will also be static.

So, in general, my argument is that in the context of high-level synthesis, the static loop
bound is kind of a very it is not too restrictive assumption rather it is kind of very
common right you do not find any for loops in high-level synthesis context most of the
time. In this high-level synthesis context, you will not find very rarely test cases for

loops have dynamic bound right.

So, most of the cases it will be have a static bound and hence, this is not too restrictive
bound. There may be some scenarios where your for loop can be of dynamic bound, but
that is very rare scenarios ok. So, although this end-to-end equivalence checking is a
trace level equivalence and path levels scanner method cannot be applied. But we found
that this which inherently tell us that you cannot have a static loop dynamic loop bound,
but we argued here that this that is not a too restrictive assumption ok. Let us now move

on.

(Refer Slide Time: 25:56)

Program Model \

M)
* Finite State machine with Data paths u
Wﬂ:rmanons of a path
omputat|on/trace
. Cond|t|on (0} executlon an

ulvalence of two FSMDs :

For any execution trace in one FSMD, there is an equivalent one in the other &)
FSMD. For any computatlon/tracg_g_of M, there exists a computation/trace 0

¢, in M, so that ¢,= ¢, and vice-versa.
i 1 0 @ C{‘/\U 9\ CQM Co

~

“\\ ﬁwcv\\ﬁ%)dr(eV 3 G CMJC" €

So, program model again we are going to use the FSMD. So, that we have already

discussed. So, I am not going into detail of that. That is already discussed in the last

class. And in FSMD, we have paths the similar definition that have taken in the last

class.

And for every path, we have a condition of execution and data transformation which
basically represent the final values of the every variable in symbolic expressions right in
terms of the inputs or variables right. And condition of execution is something; the

condition that has to be satisfied by the path.

So, I can actually have. Similarly, I have computation and trace. Trace is basically a path
which start from the start node and in the end node is basically one execution of the
program right. And similarly, for this compute trace or computation, we can define the
condition of execution and data transformation of the path. So, for this once you take that
trace, we do not have to check the intermediate variables expression. We have to just
check the expression of the output. So, the data transformation is basically the output

expressions right.

(Refer Slide Time: 27:04)

*Two traces are equivalent if
condition of executions are
equivalent and the respective
outputs are equivalent.

* Condition _executions and the

output_expressions are symbolic

expressions over Inputs and
constants.

e —

Ja =42 b b2
1

Fig. 1 FSMD of (a*b modn) before scheduling

IIT Guwahati

So, that is the difference from the earlier cases. So, basically, we say that this, because if
you want to take a trace like this right. So, suppose this trace you take. So, here finally,

your output will be in terms of the inputs right.

So, I do not have to take the intermediate value of say a’s a b those things I do not need,

because those are already intermediate variables. I have to just check once you have a

trace whether the outputs are different equivalent or not. What is the intermediate

variable? I do not I do not care alright.

So, for this data transformation, it is not the expression for all variables rather only for
the outputs ok. And most importantly in this context, as I already argued that once you
take a trace, I can represent this condition of execution and this output expressions of any

trace over the inputs and constant.

So, they that the intermediate variable like a b a s (Refer Time: 27:58) those will not
come to picture, because that I have already given an example here right. So, I have
already argued here, once you take a trace from the start node to end node, my output

expression will be in terms of inputs ok that we have already understood.

So, that is something gives up the opportunity to compare this C and RTL-C otherwise,
we cannot compare at all right. So, that is the only correlation available and we can
actually utilize that and we can compare ok. So, that we understood that for every trace,
we will get a condition of execution and output expressions for every output and those

are will be in terms of the input variables and constant.

And we will say two trace are equivalent when their condition are equivalent and outputs
are equivalent. So, you take two trace you say their conditions are equivalent and the
output. So, if there are two output 1 is equivalent for both trace, output 2 is also
equivalent for both trace and this is a symbolic expression there is no value right. Then,

we will say two trace are equivalent.

And the equivalence of FSMD is already discussed that for every computed trace, there
is equivalent trace in other behavior and vice versa. So, you have to make sure that for
every trace there is equivalent trace there and for every trace here there is an equivalent

trace there ok. So, that is how I am going to prove the equivalence ok.

And as I argued that we have to go for this method right. So, basically you have to check
for all ¢ 0 of M O there exist c1 in M1 such that cO equivalent to ¢ 1 right. So, M 0 M s
containing M 1 implies this right. And similarly, M 1 contains in M 0 implies for all c 1
belongs to M 1, there exist a c 0 in M 0; such that c 0 equivalent to ¢ 1. So, you have to
check these two, then I can say M 1 equivalent to M M 2 programs right FSMD M 1 and
M 2. So, that.

So, basically what this particular. And we cannot go for this cut point-based method
already discussed. So, what we understand from here, that we have to take a trace and I
have to identify a corresponding trace. And if there are number of traces basically n. So,
you have to take a trace and compare n and you have to check for all n right you have to

compare with all n to find out which is equivalent right. So, that is that mean order of n.

And now, if you have to do it for all traces here. So, the complexity will be order of n
square of this. This is only the number of comparisons. And for every every two trace,
the formula back the formula that I have to check that also involves some computations
this into the complexity of formula equivalence right; the way you want to compare the

formulas ok.

So. So, this is something is the method that we are going to do, but what we try to say
that. So, this is a inevitable for our problem. So, can we do some kind of do some kind of
technique or you can apply certain kind of techniques which will improve the efficiency
of the whole process ok. So, can I do these things in order of n right; that is the

something interesting.

(Refer Slide Time: 31:15)

C to RTL Equivalence Checklng Flow

~]
Mergemmpanh B
=k
|
race T
i

kequ wlence ‘

between traces
N (waner) 7

,,,

So, we try to come up with certain techniques which is basically tell us to improve the
efficiency of this C to RTL equivalence checking ok. So, this is the overall flow. So, this

is the RTL to C conversions. The basic idea of here that we will identify.

So, I will let us go into the method first. So, basically what I am going to do, I have to
identify all the traces. So, I am going to find out all the traces in both the behavior. This
is my input C code this is the RTL. And then, there is interesting things I am going to do
is the merge compatible trace here right. So, whatever the traces there, I will try to find
out the compatible trace and I will try to merge them into one. So, it will reduce the size.

Same thing I am going to do it here right. So, I am not checking anything beyond this.

Then, the process is that you select trace 70 here and you find a trace 71 here right. So,
these things I am going to use a method called the data-dependent method right. So, that
is very interesting. So, using that from O(n*n) comparison, I can reduce into O(n)

computation. So, that is data dependency checking. So, I am going to talk about that.

Once I found the corresponding trace, I have to check the equivalence that is. This
equivalence checking will be done by the SMT tool right. I will explain that also. And if
I found they are actually equivalent, then I will go for the next trace otherwise, I will say
[FL] they are not equivalent they may not be equivalent. This is the overall process. The
two interesting thing that we are doing here, is this two that merge compatible trace and
this data driven finding corresponding trace using data driven approach. So, I am going

to talk about the steps of the overall process ok.

(Refer Slide Time: 32:51)

Generate all traces in both the behaviours

* We have Use identify all traces and their symbolic condition

of executions and-olitput expressions
T EXeCu

if (el
if(c2)
if (el 86 €)1 ey

tl=a+bh;
}

elsef

) E € ¢ tl=cxd;
} :
(a) ®

So, first thing is that you identify all traces in one behavior right. So, given a behavior,

we have to identify the trace and for trace, you have to identify the condition of

execution and the output expressions. So, we have to do it right. And for that, we have
used a tool called KLEE, which is a symbol of symbolic execution tool, and if you a give
C program, which actually identifies all the traces and their condition of execution and
data transformation in symbolically right. So, this is the link for the tool and you can

actually try that.

Let us take an example here. Say suppose, this is my input behavior and, because of this
conditional scheduling; for this, the representation is this and this is the final RTL-C
right say and this is my C. I am not going to explain here how it is happening. So, one
thing you can understand here that there are two traces here. I take a very small example

to explain and here, there are three traces right.

So, there are two traces here and there are three traces here. So, you can understand here
that the number of traces may not be the same in both the behaviors and, because of the
conditional optimizations. So, if you just compare for this path you may not find the
equivalent path there right equivalent trace there. So, that is a problem right. So, but this
is the first step given the behavior, I will identify the number of traces in C and I will

identify the number of traces in RTL-C ok this is my step 1.

(Refer Slide Time: 34:14)

Merge compatible traces

* To improve performance of equivalence checking, traces which have same output
expression, i.e., compatible traces, in each behaviour are merged.

c18&c/ et &&c2)/
tl=ash tl=cXd

e

* Number of traces may not be the same even after merging compatible traces

Next, is very interesting is a merge compatible trace; what I am going to do. We identify
that the number of traces in both the behavior may not be the same ok, but there may be

some trace within the behavior. So, I am not taking two behavior now, I am going to take

a single behavior. Say, let us say I took this behavior now. And I try to identify two
traces say, this is the trace 1 this is my trace 2. In these two traces, I try to identify if the

data output expressions are the same or not right.

So, let us say here the output is basically said r3 right. So, I can see here that this r1=c *d
this is also r3 = c * d right so; that means, the output of these two traces is actually
equivalent right. So, this rl = c * d and this r3= c * d. So, this is basically a compatible

trace.

So, basically, we will say these two traces are compatible within a particular program if
their output equivalent expressions are the same ok. In that case, I am going to merge
this into one. So, how we will do. So, whatever the condition of this path; say, this is a

condition is a zc; and this zco.

So, this will be my condition of the merge computation right (zc= zc;, 7¢2). So, I will just
merge into one and the computation of condition of execution becomes or of these two
conditions and the expression is same. So, the output expression will remain ¢ * d right.

So, this is the first thing I am going to do.

And we found that this is very important otherwise, the complexity of your equivalence
checking will grow and we found many cases this kind of compatible traces, because of
the conditional transformation this kind of thing happens and you can actually find out
the compatible trace and merge them into one right. So, this is the first step I am going to

do,.

But we found several scenarios, where the number of traces did even not become same
for both the program after merging. For this case, it will become same. There are two
trace here, tracel, trace2. Here, this will be tracel and this union will be trace2. So, there
are two traces. So, for this case, the number of traces become the same after merging
compatible traces, but in general, the number of the trace may not become same even
after this, because of some complex transformation which stop us from merging this

compatible trace ok.

So, this is actually a useful trick to reduce the complexity, because whatever I am saying,
I have to compare this trace versus trace, but the technique that I am going to propose

here will reduce the complexity. So, here, because 2 and 3 I cannot compare. So, I merge

these two traces into one. Now, 2 into 2 so, I can compare them easily right. So, that will

reduce the complexity of the equivalence checking.

(Refer Slide Time: 36:51)

Find potential corresponding traces between
. -— m
two behaviours

e

* For each trace in M1, we need to find an equivalent trace in M2.
+ Complexity(O(n?))where n is the number of traces

* Can we reduce the complexity? OL\,\)
* Usé data-driven approach)
* Usg jor the same

bty

il

Next, I am doing a very interesting thing that is finding potential corresponding traces
between two behaviors. So, what I have told you is that you take a trace here, and there
are say n number of traces here right in this program 2. This is program 1 this is program
2. So, if you have to compare this with this, this with this, this with this, this with this
and this. So, it is basically all n you have to compare right. And I have argued that since
there are n number of traces here, it will be O(n) square complexity that I have already

talked about right.

So, can I reduce this complexity to O(n)? Yes. So, we can do that using a technique
called data driven approach. So, idea is very simple. The idea is that you take a trace here
ok and you identify a input for which this trace will be execute ok. Now, you apply the
same trace to this program right. So, if you give the input to this program, what will
happen; one of the trace will execute right not all of them, because if you give an input

only one of the trace will execute.

So, now suppose, I took this trace and I take a input which actually make sure this trace
will execute. And now, I apply this input to this program and I found that this is the trace
that is going to execute for this input. I will say these two traces are potentially

equivalent right.

So, now, I do not have to compare with all traces. So, I will just take this trace 71 this
trace 72 and I will just check whether they are equivalent or not. If I found they are
equivalent, al then I will say yes; they are equivalent if not, there I say this program may
not be equivalent. So, I am not comparing this with all n rather with an input with the

help of input, I identify directly the corresponding trace ok.

And. So, this O(n)checking is gone. So, the overall complexity will become now,O(n)
not O(n*n) right. So, that is the basic idea of this and we can again use the tool KLEE to
do this. So, with KLEE you can actually set some input and it will give you a trace. And
then with this input, you can actually identify the corresponding trace right. So, we use

the tool and that actually help to reduce the complexity ok. This is the basic idea.

(Refer Slide Time: 39:10)

Checking one to one equivalence

* For each potential corresponding traces, we check if their respective
condition of executions and data transformations are equivalent

* Usd SMT Solvey/for formally prove the equivalence of potential

corresponig traces:y"™) 20 7
/ = C{v

NLC“'ZC{J\”I\OM 3 Cop
\

Tk 0 (027 (01
<\ o

So, once you have this potential trace right. So, I have trace 1 here, I have trace2 right so,
71 and 72. The next problem is that you have to compare these two right. So, these two
trace whether they are equivalent or not. And this comparison we have two arithmetic

expression, we have to compare right. This comparison how can I do.

So, for that we use a tool SMT Solver and with the tool, we use Z3 ok. So, the idea here
is that and this SMT Solver is basically just check the satisfiability formula right. So, the
equivalence problem of this two paths has to be model as a satisfiability formula for a

SMT solver. So, how we can formulate that?

The formula is that for this 71 we c, which is the condition of execution and the
condition of execution is c,; here. And it has O, which is the output expression for this,
and for this it is O, right. These are the things we have. Now, I have to model a
satisfiability formula. So, there will be a formula that will be either satisfiable or

unsatisfiable right.

And the way I have to model this equivalence problem of a path into the satisfiability
formula; is such that when the formula become UNSAT, I will say these two are
equivalent ok. So, that is the idea. So, how do I going to model it? So, I will say that
Cn = ¢ and O, = Or. So, if we try to you just give this formula and you ask the tool
you just find a sat right check sat. What it will do? It will basically check this and we

will try to find out an input for which it will this formula is true right.

So, now the problem here, is that it was just written one input value for which this
formula says it is true ok. So, as a result, you are not actually formally proving the
equivalence right. It is just checking for this input this formula is satisfiable or true right.
So, what I am going to do? I will take the negation of this formula ok and I will check

the UNSAT right.

So, I will now, check the sat again. So, what will happen? I try to; so, what does it mean?
It means here, that you find an input for which these two paths are not equivalent right. If
the tool finds an input for which these two paths are not equivalent, then indeed it is

basically they are not equivalent trace right.

But it is if it is written UNSAT, what does it mean? It means it does not find any input
for which this path is not equivalent. What does it mean? It is basically equivalent right.
So, I basically take the negation of the satisfiability problem and ask the tool to identify
your input for which these two path are not equivalent. And since these two paths, if the
paths are equivalent, you will not find any input for which they are actually different

right.

So, it will return. So, this is this formula is UNSAT and the UNSAT of the formula says
these two are traces are equivalent. So, this is how I am going to check the equivalence

of two traces ok using the SMT Solver.

(Refer Slide Time: 42:31)

Checking one to many equivalence
=

* In some cases one to one equivalence can not be obtain for a subset
of traces.

* For each of such trace, we identify iteratively a set of traces that are
equivalent to a trace \
O W

And I have seen that in some cases, if the one-to-one correspondence cannot be shown,
then what we have to do one-to-many equivalence right and that needs O(n*n) cross-
checking. But we will say we will only do it for very few traces for which one-to-one
correspondence cannot be proven ok. So, that is the idea of this. So, in the worst case we
have to do this, but this it has to be done for very not for all n right. It will be for some n;

number of things, where n is very less than n ok.

(Refer Slide Time: 43:01)

A
Algorithm 1: C_to_RTL_EqCheck /C.)I‘TL-C) }
Input: Input-C, RTL-C N

sult: Equivalent, not equivalent
i $= findTrace(C); —@‘!nd'l’mcdk’l’l;(’.):
= mergeTreedR)\T) = mergeTrace (Th);
3opyTo= 'I'u: Ty; flag = 0;
4 while 7y 7 ¢ do
| 2= select a trace fm
,\é\&‘ = getTestease();
0 ud

nl_race'l\,'@
e~

els e
endil

| removeTrace (m, To);
19 endwhile

d
Ty A, Nsr, 7 37, then
% | Report “May ot equivalent” and Exit;

2 Report Equivalent (Eq);

So, let us now explain the overall algorithm. So, as I said. So, you identify the traces. We
have given two programs; C and RTL-C. You model them as FSMD. You find traces in
both the programs and you also, find the traces and then you merge the compatible traces

also.

So, you reduce the SAT ok. Then, what I am doing is very interesting. This is this one-
to-one correspondence right. So, this is one-to-one checking and this is basically one-to-

many ok.

So, in the one-to-one what I am doing. I will just take a trace of this one program and for
that, I will take a test case, and then I run the other program with this test case to get a
corresponding trace the potential corresponding trace. So, I am not. I am checking
O(n*n). You see this is O(n) algorithm and this is O(n*n) algorithm there are two for

loops right here only one while loop.

So, I identify a corresponding trace and this is the formula I am just checking right. So,
whether that is equivalent or not. If they are equivalent. So, I will say I the I identify the
equivalence. So, I will just remove these two traces, because for them, equivalence is
already obtained. And if I found that condition is same, but the data transformation is

difficult different the output is different, then I say they are not equivalent.

Because if the condition same, these two traces are basically must be equivalent
otherwise, it is a problem, but I found that output expressions are different. So, I will say
they may not be equivalent. Otherwise, what I will say. This trace 7; I cannot prove the

equivalence ok. So, for this O(n *n) is needed right.

So, I will just keep that into this copy of t; right. So, in the copy of t;, I will just remove
all the traces for which equivalence is found. And the trace for which equivalence cannot
be found in O(n) time I will keep them into copy 7y; this traces as I right. So, this will go

on for all tracers.

And for all cases where one-to-one equivalence can be proven, it will be done here right.
If it is not done here, the remaining traces will remain here. And for that, you can see I
am doing a O(n*n) checking and what I am doing here, I will just So, basically what is

going to happen.

So, there is a trace and this is the say the condition space right and there will be multiple
trace here. So, this is the condition for one trace here, and there may be one trace which
will which condition will be this space in the other program. There will be another trace
for which the condition will be this part and there will be another trace for which

condition will be this part.

So, these three traces. So, this is a 71, 7> and 73, which will be union of these three will be
equivalent to 7. So, 7 =(71 U 72 U 73) is the complete condition. So, that is what is
happening here. So, I will take a trace 7, and I will identify a trace 71; so that their

condition is non-null; that means, there is some overlap. So, I will identify this part ok.

And then, I will see if their output expressions are equivalent right. So, what I am going
to see. I identify a trace in the other behavior, whose condition is basically a subset of the
trace and I will check if their output is equivalent or not. If they are equivalent, then I

will say it is fine. If not, they will say they may not be equivalent right.

If they are equivalent, I will identify the next one. So, I identify 7, and I will identify
their sub trace are equivalent, and then, I will again check their output expressions, if
they are the same. I will say they are equivalent move on and then I try to find out the

next trace ts.

So, this way this inner loop will identify for every trace 7, it will identify all the traces
which is a subset of this condition of 7;, and since this program is deterministic, so ¢, =

(cn U ¢ U C 43 right, because this is a deterministic program.

So, this way for every trace, I will identify a set of traces in other programs whose union
of them will be equivalent to this trace ok. So, this you remember that again I am not
doing for all traces, because in most of the cases the equivalence will be found here.

Only very corner cases, I have to do this.

So, this is the overall idea right. So, what I have done here, is that this still trace level
equivalence has to be done, but we try to do several kinds of tricks to reduce the

complexity ok.

(Refer Slide Time: 47:17)

Experimental Results @/ j \«)
Bench #in [#out | C code RTL code RTL-C Traces Y_ Hquivalent Not Equivalent
L [#linc | #var | #linc | #regs | #linc | #var | #C | #RTLC | #merged /mnc (s) [result | Gime 3) | result
0 O[O | @ [A6|A|®][O 0] 1) |)N AT (14) 3)\|_(16)
7 Waka [20] 3 | 3 /2N 20 |72\ 382 | 126 |3 | @D | G.31]] /179 Y| Eq | [066% | MNE

A [T & [53 [[43 |\357 [19 Y 607 058 [4 | 4 [(3.3) [[/ 18% |\ Eq [[0940 [|MNE
T Paker | 6 [1 [6 [14 [[96] 10 | 275 | 10 @) [@) || 161 [[\Eq [] 0976 |[MNE
FindMin8 |8~ T[40 [IS [[T75 | 1T | 780 | 243 ((Tl_ﬁz) (08) | (8.8 || 22246 | \Eq |/ T7.14T||MNE
MairixAdd | 2 | 1 | 48 [/ N | 73 | [\ 5595 | 241 | N| T 4 (L) || 1684 || [Eg | 0749 [|[MNE
SumAmay [1T [1 [19 [\@)] 263 [@) [541 [100 | 1 Y—F | (L0)]] 054] [Eq [0706 | MNE
[Motion | 10| 3 | 52 (A8 413 [20 [88T [235 [1 | T | (LDJ] 0681l [Fg [[0663 | MNE
\Dfadd | 2 | 1 | 719 | 70/[1975 | 113 /[935% [1041 [(6} | (68 | (2142741016052)/ Eq || 960238 | MNE

So, let us explain some examples here. So, experimented results. So, these are the test
case we have taken. As you can see here these examples are moderate size; the number
of variables is high and this is the RTL code size and this is the RTL-C. So, it is the
number of lines of code is much higher than the C code and we have also seen that think
seen in an example right. Interesting things to be noticed here, that the number of

registers ok.

So, a number of registers here and this is the number of variables. Here, you can see that
this is always less than the number of variables 32 12 43 29 right. So, usually, because of
this the register allocation happened. So, most of the cases is basically the number of
registers. We will try to optimize the number of registers right. So, it is the number of

registers is less than the number of variables.

In some cases it is basically more because this array mapped two registers right. So, there
are two cases; the matrix array and the sum array, where this array becomes. An array is
a single variable here that is mapped to the register. So, that is why the number of
registers more in this scenario otherwise, it is always the same and this is a number of

traces.

You can see in many cases, the number of traces are not equivalent right. So, the number
of traces are not equivalent we can understand that. So, this is so, that is why this

compatible trace is important and the number of traces are not equivalent here also. So,

then we do the merge compatible traces. And after that, this is a number of trace in

programl this is the program?2.

We can see here that most of the cases the number of traces becomes equivalent except
in one scenario. So, this tells us the usefulness of the merge equivalent trace many cases
the number of traces are not same before you compare merging compatible trace, but

after that they become simple right.

Most interest; one important thing say that there are 120 after traces and there are 128
traces here. Then, tthesel28 traces merge and become 8 traces. So, merging is
compatible trace helps to reduce the number of traces also because we found that there

are numbers of traces, where the outputs are equivalent, I can merge them.

So, the complexity also reduces here. So, this is a very interesting and important step that
actually make my problem or this equivalence checking problem scalable right or
actually makes it very helpful ok. So, then after that we check. So, we can understand
that. So, out of this I think there are 7 or 8 test cases are there; 7 test cases the number of

traces based come equivalent. In only one case, it is not equivalent.

So, most of the cases in this scenario O(n) will suffice right. Only this case, I have to go
for O(n*n) checking, because the number of tests is not artifice not same. So, this is very
helpful right. So, in most of the cases merge compatible trace reduce the problem into a
such problem that one-to-one corresponding checking can help right. And we can

identify that the number of time taken is very less right.

So, most of the cases are within seconds right. So, the only case where you have to go for
n square the time is more; than 1000 seconds right, but still that time is not so high right.
So, this, because in every case we are actually using we call the SMT Solver and that
takes a lot of time, because of that actually check the formula, then it checks the UNSAT
and SAT.

So, it also that this time involves the SMT time as well. So, we can understand that
including the SMT time also, the time is also very reasonable. And then we identify may
we. Basically, take this example. We introduce certain bugs in the RTL-C and we check
the non-equivalent and most of the time we have very quickly also prove the non-

equivalence right.

So, it shows that if there is a bug our tool can easily detect it right and if there is no bug,

we can show the equivalence ok.

(Refer Slide Time: 51:07)

Summary

* We have proposed an RTL to C translation validation framework for
verification HLS results.

* The inno

Extraction of a RTL-C fjom the RTL to reduce the semantic gap between C and

e part of our framework to improve the efficiency

Merging compatible traces within a behaviour to handle control structure

maogdification during HLS
+AUse of a data-driven approach to find the potential equivalent trace pairs

between two behaviours.

* The equivalence of potential equivalence traces are then formally proved
using an SMT solver.

So, that is all; so, just to summarize. In this discussion, we propose an RTL to C
translation validation framework right for high-level synthesis. So, we have a RTL and
C. We try to propose an equivalence. And to make this particular equivalence checking

framework, there are certain things is very innovative in our flow.

First of the things is that this extraction of the RTL-C. Unless we have the C, we cannot
just compare. So, this RTL to C conversion is very helpful and very interesting in this
context. So, that only enables this whole problem. And also, we proposed this merging of
compatible traces, which also helps us to reduce the complexity most of the time and is
useful to make the number of traces equivalent in or equivalent or same in both

programs. So, that is also very useful.

And then, we also use an approach called data-driven approach. So, which actually help
us to identify the potential equivalent trace between two programs, in order of n time
instead of n square such. So, that also improves efficiency. And finally, the formal you
have proved the for equivalence of two trace formally, using that solver SMT tool right

this is 3. So, this is the overall idea ok.

Thank you.

