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Welcome  everyone.  In  today’s  class,  we  are  going  to  discuss  about  C  to  RTL

equivalence checking for high-level synthesis.

(Refer Slide Time: 01:01)

So, as we already know, this high-level synthesis converts C code into equivalent RTL

code  and  it  goes  through  various  sub-processes  like  pre-processing,  scheduling,

allocation binding, data path and control, and path generation phase right.



(Refer Slide Time: 01:15)

And there are two ways we can verify this process; one is simulation-based verification

and  another  is  a  formal  method-based  verification.  So,  for  formal  method-based

verification,  we  already  discussed  in  last  class  that  this  translation  validation  is

something is very popularly used for high-level synthesis.

And in translation validation, we basically take one input program we run through high-

level synthesis we get an RTL and then we check the equivalence between them right.

And inherently, this equivalence problem is undecidable. So, we cannot have a complete

method.  So,  which  can  say  yes,  no  in  all  cases;  yes  for  equivalence  no  for  non-

equivalence,  but the method usually sounds.  So, it  means whenever  it  says yes;  that

means, it is equivalent and it may not able to detect whether it is equivalent or not right.

So, it will say may not ok. This I have we have already discussed.



(Refer Slide Time: 02:10)

And also, we have argued in the last class that, because this C and RTL there is a lot of

semantic gaps they are completely different execution patterns. So, having a direct C to

RTL equivalence  checking is  a  very difficult  task right  and as a  result,  most  of the

common research targets phase-wise verification of high-level synthesis right.

So,  in  the sense that  you verify  the  scheduling  phase,  you verify the  allocation  and

binding phase you verify the data path and controller generation phase right. So, that we

have  already  discussed.  And  in  the  last  class,  we  have  seen  the  basic  equivalence

checking method which basically models the input-output of one phase as FSMD finite

state machine data path. 

And then, we define  equivalence of FSMDs and then we have seen how we can actually

adapt  that  equivalence  method  to  verify  the  phases  right.  So,  that  we  have  already

discussed.



(Refer Slide Time: 03:09)

Now, the point here is that once you try to do a phase-wise verification which actually go

to it basically verifies all the difficulties of every phases. And you can actually point out

the  bug  that  actually  occurred  in  which  phase  right.  The  bug  might  occur  in  the

scheduling phase which might occur in the allocation phase or so on right.

So, it can pinpoint that, but the disadvantage of the whole process is that you need the

intermediate information right. So, you need the scheduling output right. So, whatever

the scheduling output you need to get that from the tool. You need the all information

after allocation and binding right.

So, which may not be always available. Specifically for commercial tools, this kind of

information in detail may not be available. So, in such a case verifying this phase-wise is

difficult right. On the other hand, C and RTL are the input and output of the program and

is always available.

So, having an end-to-end equivalence checking for high-level synthesis where you have

only the C-code and you have the RTL. There is no intermediate information available

with  you  is  something  will  be  very  important  and  it  will  be  useful  ok.  So,  that  is

something we are going to discuss. And we have already discussed that this particular is

a very difficult problem which is checking equivalence between C and RTL; it is a very

difficult problem, because of their semantic pattern right.



So, basically,  the way C executes the way this RTL executes is completely different

having this direct equivalence is a difficult process, But why? So, in this particular class,

we are going to discuss if we want to do that what will be a possible way right and what

are  the  limitations  of  that  method  and  how  we  can  do  that  how  can  improve  the

efficiency of the whole process right. So, let us discuss that.

So, the problem statement for today’s class is that you have given a C code you have

given a RTL which is generated by the high-level synthesis tool any high-level synthesis

tool from that input C code. And I want to check whether this C and RTL equivalent or

not right. So, that is the problem statement we want to do.

And; obviously, as I try to argue multiple times the way this c executes the way RTL

executes is completely different. So, having an equivalence checking method basically

the way I  just  defined like  if  FSMD based equivalence  checking,  cannot  be directly

applied right, because you cannot have a model of the model of v that Verilog versus the

model of C you cannot compare right. Their execution pattern is different.

So, what is the way out. So, fortunately,  in the last-to-last class we have discussed a

converter right RTL to C converter right. So, that we have already discussed. I hope you

remember that. So, specifically, the RTL that is generated by the high-level synthesis

tool has a very specific structure that I have talked about that it has a data path and a

controller.

And just by analyzing the data path for each controller signal is in state controllers, and

assignments, we can extract the operation that is happening in the data path. And this

way the controller FSM converts it into FSMD and our program model is a FSMD right.

So, we have already modeled our input C behavior as FSMD only right. 

And now, I am talking about how I can convert that FSM controller FSM into n FSMD.

So, now, these two ICS can be comparable right. So, that something actually this RTL to

C conversion actually gives an opportunity to do an end to end equivalence checking

which is something that does not exist so far.

If you look into the literature at the current moment, there is no such open tools available

there is no commercial solution exists. So, there is no such offering right from industry

or academia. So, the point that I want to argue here is that this C to RTL conversion



actually keeps open the door right. So, you have C code you have an FSMD which we

represent by C code, but say it is basically an FSMD. 

So,  now  we  have  two  FSMD  whose  6-execution  pattern  is  exactly  the  same  the

semantics are exactly the same. So, I can now compare right. So, the argument that I try

to  make  to  do  a  C  to  RTL  equivalence  checking  you  need  some  sort  of  similar

representation right. So, a similar representation that I emphasize otherwise, you cannot

compare apple with mango right. So, they are two different things.

So, similarly, we need to differ the same representation, and fortunately, because of this

RTL-to-C conversion I have a similar representation now. So, this RTL to C conversion

is helpful here. And that converts this C that RTL to FSMD right and I have the input C

which we can represent as an FSMD; already we have discussed in the last class. So,

now, I can check the right equivalence. So, that is the way I am going to do ok.

(Refer Slide Time: 08:27)

So, this RTL-C conversion I have already discussed in the last class that you have this

controller FSM. Just to recap this you have the data path, what I am going to do? In each

state  whatever  the  control  assignment,  I  will  analyze  the  circuit  for  this,  and I  will

identify, that because of these control signal values these operations are happening right.

So, I will replace this with this. I am going to do this for all states. I am going to do this

to all states and once I do this is nothing, but my FSMD. And if this particular behavior



has no clock, no reset, no memory nothing this is simple high-level C code right. So, that

is what we have already discussed. So, this we can represent as a C code as well.

So, this actually helps us ok. So, the approach that we are going to take is that we convert

this  RTL into  an  FSMD by this  RTL this  conversion  method  that  we have  already

discussed. And now, we have two behavior which is comparable. Now, I am going to

check what could be the equivalence checking method here. What are the problems here?

Although we have two FSMDs did the same problem that we have solved for scheduling

verification allocation binding verification and so on or it is something different right.

So, let us try to understand that.

(Refer Slide Time: 09:43)

So, let us try to understand how the C and RTL-C which is RTL-C is something the C

that is extracted from RTL ok. So, let us try to understand that. And for that, I actually

will see you some a real example that our tool actually generates from a benchmark ok.

So, let me just show you that.
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Say I have this GitHub is publicly available. You can go into this FastSim if you just

search FastSim, you will get this GitHub.

(Refer Slide Time: 10:16)

So, let us take a very simple example ok. So, this is a waka example which has this is a

behavior  right,  this  is  my input  C code ok.  So,  you can  see  here  there  are  a  lot  of

operations which are happening; if-else and it has these are the inputs right. So, there are

32 I mean so, in1 to in32. There are certain inputs and there are three outputs ok.



Now, if I run this particular code using Vivado HLS tool, I will get this RTL ok. You can

see here fortunately the inputs are the  same right. So, in1 to in32 the same inputs. It has

all  the same outputs out13, out30, and out31 right.  The only thing it has some valid

signal which is basically say it which time that particular output becomes valid right. So,

that something is there.

So, I can conclude here that the input and output specifications are exactly the same. So,

here, you can see the input variables are t1, t2, t3; these are the temporary variables that

are used in this program right. What about here. It has you have to check the registers

right.

(Refer Slide Time: 11:22)

So, you can see here that there are so many registers right and. So, wire is basically an

intermediate signal. We do not have to bother about that. But if you see here, the register

some like reg_361 some t61; you can see here there are many registers.

So, we can see that these internal variables are different. Input-output are same for both

Verilog and RTL, but the intermediate variables are different because here intermediate

variables are the temporary variables of the program and here it is basically the registers

right.



And why I am talking about registers is because if you remember the rewriting method,

we actually rewrite everything in terms of registers right. Finally, in the FSMD this wire

does not exist. Everything will be in terms of registers ok.

(Refer Slide Time: 12:13)

So,  now you see  here,  this  is  the  while  I  will  talk  about  that.  So,  this  is  the  FSM

controller FSM right. you can see here that in state 1; if such condition hold, then I will

go to this state otherwise, I will go to this state, and so on. In this state, I am going to do

this. This is my controller FSM the way I just explained right.

(Refer Slide Time: 12:24)



And these are the operations that are actually enabled state-wise. For example, if you see

in the state 6, I am going to do this signal equal to 1 right. So, similarly, in this particular

state  3,  I  am going to  do these operations.  Here,  this  is  basically  a  register  transfer

operation.

(Refer Slide Time: 12:46)

So, now, from this, I will keep doing rewriting and there is this assignment statement

which is always happening always true right.

(Refer Slide Time: 12:55)
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So, I am going to. So, for example, if you search this temp 294 p2. So, let us go here, you

can see here 294 p2. So, it is getting replaced by this right. Then, I have to retake this and

you have to take I will find operation which is basically we will replace this right.

So, this way it will be rewriting operation is happening. So, this is the RTL. It is actually

generated where this assigned statement at the wire assignment is always true and these

are the register transfer operations initiation happening state-wise right.

(Refer Slide Time: 13:28)

So, from this behavior, we are able to generate a C code right.
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So, this is my generated C code. Let me look into that.

 (Refer Slide Time: 13:35)

So,  in  this  code;  so,  as  I  mentioned  that  I  am going to  define  every  variable  as  an

unsigned  long  int.  So,  these  are  the  variables  and  you  can  see  here  the  inputs  are

basically the same inputs.
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And you can see it here. So, many variables have to define right and I just initialize them

to 0 right.

(Refer Slide Time: 13:55)

So, these are the all variables that is there in the Verilog. So, we have defined it.
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And this is the behavior. In state 1, I just assign that old to new things that I have already

discussed that what data inconsistency and the these are the operation which happening

in state 1 right.

(Refer Slide Time: 14:09)

So, under this condition, I am going to states 2. Under this condition, I am going to go to

about  state  1  and  so  on.  In  the  state  2,  again  old  to  new  assignments  new  to  old

assignments and then, these are the operation is happening right. So, then this is state 3

and so on.
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So, what we have seen here. So, this is my input program which is basically of 30 lines

right.

(Refer Slide Time: 14:31)

Here,  let  us  see  the  code.  It  is  basically  380  lines.  So,  you  can  understand  this  is

something  completely  different  structure.  The  variables  are  different  operations  are

different control structures are different. So, this is. So, we have to check the equivalence

between this five this code and this code that is the problem statement for us and this is a

very simple code.



I open the smallest test case available to us ok. So, let us now move to the presentation.

So, what we understood from a practical example is this once you have the C and RTL-

C, we have the inputs and outputs are the same right; both have the same input-output

and there the name is also the same. So, that correlation is available to us.

Control structures are different.  They get changed due to scheduling and the internal

variables are completely different. So, for the C program, the internal variables are the

variables and for this, this registers right. So, that is something that is the given thing to

us.

Now, if you just remember that for this that path-based equivalence checking method

that we have already discussed in the previous class that we have talked about that this

the basic equivalence one. When we can say two FSMDs are equivalent that when you

say  for  every  trace  or  every  computation  of  one  behavior,  there  is  an  equivalent

computation right.

That  means you give an input you get  a  trace one execution  trace and you find the

equivalent trace in other behavior and you do for all possible traces right. So, this is n

square kind of comparison. And we argued that, because dynamic loop bound when the

loop bound is not static, it is in input dependent. You might have a very large number of

these traces.

So,  that  equivalence  checking  is  a  difficult  problem right.  And because  of  that,  we

actually  insert  cut  points  right.  We  break  the  problem  into  smaller  problems  by

introducing cut points in the behavior and then, we identify the path covers. The path

covers is a path between the cut points, not the complete trace. 

And then,  we come up with  an equivalence  checking method that  actually  does  not

identify the trace level equivalence but rather path level equivalence for every path of

this path cover, we try to find the equivalent path in the other FSMDs. And since this

path cover  is  a finite  representation.  So, this  equivalence checking problem becomes

scalable right.  And it  has the advantage that it  can actually  handle loops of dynamic

bound right. Now, let us try to see. Here, if I try to do a similar approach and what is the

problem right.
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So, say suppose I take a simple example. So, suppose I have a path here. So, this is my

say path 1, where say a = in1 + 5 and b = in2 - 6 right and this is my path 2.

Here, I am doing say out1 = a + b and out2 = a + 10 right and say this I decided a cut

point right and this is a cut point say. So, these are the say cut points.

So, there are two paths and according to our previous definition, I want to check the

equivalence  of  this  path  right.  So,  I  will  take  this  path.  Now,  let  us  consider  the

corresponding RTL-C behavior. This becomes r1= in1 + 5. This becomes r2 = in2 - 6

and there this is out1= r1 + r2 and then, out2 = r1 + 10 right this is my RTL-C and this is

my C.

So, now if you try to compare this path with this path. So, what will be the expressions of

out1. Out1 = a + b right and out2 = a + 10 right. This is the data transformation and say

there is no condition. And here, what will be the case. It will be r1 + r2 and r1 + 10 right

this is my out 1 and this is my out 2.

Now, problem is that once you try to find this path equivalent to this path, you have to

compare this expression right you have to say the data transformation are equivalent; that

means,  this  expression  <a+b>  and  this  expression  <r1+r2>  is  equivalent.  This

expression <1+10> and this expression <r1+10> is equivalent.



But here, I cannot compare, because they are using the intermediate variables a and b

here it is r1and r2 and I have no information whether a is r1 or  b is r2 or not right. So, I

cannot just compare. So, that is a big problem right. So, the problem is that this cut point-

based method will not work for this, because when you take an intermediate path, my

data transformation or the expressions will be in terms of the intermediate variables and

the intermediate variables are completely different right.

So, I cannot just compare these two paths. So, that will not work, but now let us take the

complete trace. So, this is the trace right. So, this is trace 𝜏1 and this is trace 𝜏 2. Now, let

us try to explain x again and try to rewrite out1 in terms of inputs right. So, now, the

rewriting will happen. Now, my out1 =  a+ b, where a=n1+5 and b=in2 - 6.

So, out1= in1 + in2 - 1. This is my out1 and this out2 =a+10, will be out2 = in1 + 15

right. And <r1+r2, r1+10> here, again it will become <in1 + in2 - 1 , in1+15>. So, once

you take a trace, I can actually represent my output in terms of the input and constant

right.

So, now I can say these expressions are the same. These expressions and this expression

same. So, I will say take it 𝜏1 ≡ 𝜏2. So, the point that I try to make here is that for this

problem  when  we  have  the  C  and  RTL-C;  since  my  intermediate  variables  are

completely  different.  So,  I  cannot  just  compare  by intermediate  paths,  because  their

expression or representation will be in terms of the intermediate variable and there is no

relation available to us.

On the other hand, when you take a trace; a trace is something the complete path from

the input to output from the start node to the end node right. So, for trace, I can represent

my output in terms of inputs only, because the intermediate variables are not defined

they are always get defined and used. So, they will be replaced by the inputs right. So,

finally, these output expressions will be in terms of the inputs and then I can compare

right.

So, the important point that is very important is that whatever the path-based approach

that we have talked about for phase-based verification, we cannot apply it here , because

the intermediate variables correlation is not available right. So, we cannot just do that.

We have to do that trace level equivalence right.



So, we have seen that to compare to FSMDs, we can say that for every trace there is an

equivalent trace and vice versa right. So, that is something we have to do here. There is

no alternative until we have this correlation is given to somebody. If you give that this

variable r1 is nothing, but a and r2 is nothing, but if this information is available with. I

can replace this with a. I can replace it with this b. I can replay by this and then I can say

this expression is equal to this right.

So, if this relation is available with us, we can actually go for that scalable cut point base

equivalence  checking or  path-based equivalence  checking.  Whereas  in  this  particular

problem that is since this I assume that there is no intermediate information is available

this correlation is not available, I have to go for trace level equivalence ok.

So, for that the [FL]; obviously,  we have to  assume that  the loop bounds are static,

because if the loop bound is dynamic I so, then I do not know how many traces are there.

So, this particular if. So, if this bound is not given and if I say this is a integer. So, I have

to run for 2 to the power 32 iterations of the loop right. Or if it is long int, it is 2 to the

power 64 iterations to the long int. So, those many number of traces will be there.

So, we cannot assume that. So, we will assume that the loop bounds are static and it is a

very strict bound that your loops cannot have a dynamic bound. It will always say, i to 10

or i  to 100 i  to 10000, but it  is not i  to n, n is an input ok.  So, that must be there

otherwise, the number of traces we cannot enumerate right that is the problem.

So, now I try to argue. So, this is the first difficulty that comes with making the C to

RTL equivalence checking. And now, I try to argue whether this static loop bound is

very restrictive for high-level synthesis because we try to do it not for general programs

right. We are not solving the general program equivalence rather we are trying to solve

the equivalence for high-level synthesis.

So, let us try to understand whether this is a too restrictive bound for high-level synthesis

or not. My argument is no, why? If you remember in high-level synthesis, we cannot we

do not support dynamic memory access right dynamic memory allocation we do not

access. So, the malloc calloc; those will not thing is not allocated.

So, the array is basically a fixed bound right. So, any array we cannot have we can just

malloc during the program execution because that dynamic memory allocation does not



support by high-level synthesis right. So, it means that the arrays are of static bound or

fixed size right. Now, usually in the for loops, what we do and this for loops usually

manipulate arrays most of the time right. And if the array is a fixed size, what is the point

of keeping the loop bound dynamic right. So, it will also be static.

So, in general, my argument is that in the context of high-level synthesis, the static loop

bound is  kind of  a  very it  is  not  too restrictive  assumption  rather  it  is  kind of  very

common right you do not find any for loops in high-level synthesis context most of the

time. In this high-level synthesis context,  you will  not find very rarely test  cases for

loops have dynamic bound right.

So, most of the cases it will be have a static bound and hence, this is not too restrictive

bound. There may be some scenarios where your for loop can be of dynamic bound, but

that is very rare scenarios ok. So, although this end-to-end equivalence checking is a

trace level equivalence and path levels scanner method cannot be applied. But we found

that this which inherently tell us that you cannot have a static loop dynamic loop bound,

but we argued here that this that is not a too restrictive assumption ok. Let us now move

on.

(Refer Slide Time: 25:56)

So, program model  again we are going to use the FSMD. So,  that  we have already

discussed. So, I am not going into detail of that. That is already discussed in the last



class. And in FSMD, we have paths the similar definition that have taken in the last

class.

And for every path, we have a condition of execution and data transformation which

basically represent the final values of the every variable in symbolic expressions right in

terms  of  the  inputs  or  variables  right.  And condition  of  execution  is  something;  the

condition that has to be satisfied by the path.

So, I can actually have. Similarly, I have computation and trace. Trace is basically a path

which start from the start node and in the end node is basically one execution of the

program right. And similarly, for this compute trace or computation, we can define the

condition of execution and data transformation of the path. So, for this once you take that

trace, we do not have to check the intermediate variables expression. We have to just

check the expression of the output. So, the data transformation is basically the output

expressions right.

(Refer Slide Time: 27:04)

So, that is the difference from the earlier cases. So, basically, we say that this, because if

you want to take a trace like this right. So, suppose this trace you take. So, here finally,

your output will be in terms of the inputs right.

So, I do not have to take the intermediate value of say a’s a b those things I do not need,

because those are already intermediate variables. I have to just check once you have a



trace  whether  the  outputs  are  different  equivalent  or  not.  What  is  the  intermediate

variable? I do not I do not care alright.

So, for this data transformation, it is not the expression for all variables rather only for

the outputs ok. And most importantly in this context, as I already argued that once you

take a trace, I can represent this condition of execution and this output expressions of any

trace over the inputs and constant.

So, they that the intermediate variable like a b a s (Refer Time: 27:58) those will not

come to picture, because that I have already given an example here right. So, I have

already argued here, once you take a trace from the start node to end node, my output

expression will be in terms of inputs ok that we have already understood.

So, that is something gives up the opportunity to compare this C and RTL-C otherwise,

we cannot compare at all  right.  So, that is the only correlation available and we can

actually utilize that and we can compare ok. So, that we understood that for every trace,

we will get a condition of execution and output expressions for every output and those

are will be in terms of the input variables and constant.

And we will say two trace are equivalent when their condition are equivalent and outputs

are equivalent. So, you take two trace you say their conditions are equivalent and the

output.  So,  if  there  are  two  output  1  is  equivalent  for  both  trace,  output  2  is  also

equivalent for both trace and this is a symbolic expression there is no value right. Then,

we will say two trace are equivalent.

And the equivalence of FSMD is already discussed that for every computed trace, there

is equivalent trace in other behavior and vice versa. So, you have to make sure that for

every trace there is equivalent trace there and for every trace here there is an equivalent

trace there ok. So, that is how I am going to prove the equivalence ok.

And as I argued that we have to go for this method right. So, basically you have to check

for all c 0 of M 0 there exist c1 in M1 such that c0 equivalent to c 1 right. So, M 0 M s

containing M 1 implies this right. And similarly, M 1 contains in M 0 implies for all c 1

belongs to M 1, there exist a c 0 in M 0; such that c 0 equivalent to c 1. So, you have to

check these two, then I can say M 1 equivalent to M M 2 programs right FSMD M 1 and

M 2. So, that.



So, basically  what this  particular.  And we cannot go for this cut point-based method

already discussed. So, what we understand from here, that we have to take a trace and I

have to identify a corresponding trace. And if there are number of traces basically n. So,

you have to take a trace and compare n and you have to check for all n right you have to

compare with all n to find out which is equivalent right. So, that is that mean order of n.

And now, if you have to do it for all traces here. So, the complexity will be order of n

square of this. This is only the number of comparisons. And for every every two trace,

the formula back the formula that I have to check that also involves some computations

this into the complexity of formula equivalence right; the way you want to compare the

formulas ok.

So. So, this is something is the method that we are going to do, but what we try to say

that. So, this is a inevitable for our problem. So, can we do some kind of do some kind of

technique or you can apply certain kind of techniques which will improve the efficiency

of  the  whole  process  ok.  So,  can  I  do  these  things  in  order  of  n  right;  that  is  the

something interesting.

(Refer Slide Time: 31:15)

So, we try to come up with certain techniques which is basically tell us to improve the

efficiency of this C to RTL equivalence checking ok. So, this is the overall flow. So, this

is the RTL to C conversions. The basic idea of here that we will identify.



So, I will let us go into the method first. So, basically what I am going to do, I have to

identify all the traces. So, I am going to find out all the traces in both the behavior. This

is my input C code this is the RTL. And then, there is interesting things I am going to do

is the merge compatible trace here right. So, whatever the traces there, I will try to find

out the compatible trace and I will try to merge them into one. So, it will reduce the size.

Same thing I am going to do it here right. So, I am not checking anything beyond this.

Then, the process is that you select trace 𝜏0 here and you find a trace 𝜏1 here right. So,

these things I am going to use a method called the data-dependent method right. So, that

is  very  interesting.  So,  using  that  from O(n*n)  comparison,  I  can  reduce  into  O(n)

computation. So, that is data dependency checking. So, I am going to talk about that.

Once I  found the  corresponding trace,  I  have to  check the equivalence  that  is.  This

equivalence checking will be done by the SMT tool right. I will explain that also. And if

I found they are actually equivalent, then I will go for the next trace otherwise, I will say

[FL] they are not equivalent they may not be equivalent. This is the overall process. The

two interesting thing that we are doing here, is this two that merge compatible trace and

this data driven finding corresponding trace using data driven approach. So, I am going

to talk about the steps of the overall process ok.
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So, first thing is that you identify all traces in one behavior right. So, given a behavior,

we  have  to  identify  the  trace  and  for  trace,  you  have  to  identify  the  condition  of



execution and the output expressions. So, we have to do it right. And for that, we have

used a tool called KLEE, which is a symbol of symbolic execution tool, and if you a give

C program, which actually identifies all the traces and their condition of execution and

data transformation in symbolically right. So, this is the link for the tool and you can

actually try that.

Let us take an example here. Say suppose, this is my input behavior and, because of this

conditional scheduling; for this, the representation is this and this is the final RTL-C

right say and this is my C. I am not going to explain here how it is happening. So, one

thing you can understand here that there are two traces here. I take a very small example

to explain and here, there are three traces right. 

So, there are two traces here and there are three traces here. So, you can understand here

that the number of traces may not be the same in both the behaviors and, because of the

conditional optimizations. So, if you just compare for this path you may not find the

equivalent path there right equivalent trace there. So, that is a problem right. So, but this

is the first step given the behavior, I will identify the number of traces in C and I will

identify the number of traces in RTL-C ok this is my step 1.
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Next, is very interesting is a merge compatible trace; what I am going to do. We identify

that the number of traces in both the behavior may not be the same ok, but there may be

some trace within the behavior. So, I am not taking two behavior now, I am going to take



a single behavior. Say, let us say I took this behavior now. And I try to identify two

traces say, this is the trace 1 this is my trace 2. In these two traces, I try to identify if the

data output expressions are the same or not right.

So, let us say here the output is basically said r3 right. So, I can see here that this r1=c *d

this is also r3 = c * d right so; that means, the output of these two traces is actually

equivalent right. So, this r1 = c * d and this r3= c * d. So, this is basically a compatible

trace.

So, basically, we will say these two traces are compatible within a particular program if

their output equivalent expressions are the same ok. In that case, I am going to merge

this into one. So, how we will do. So, whatever the condition of this path; say, this is a

condition is a 𝜏c1 and this  𝜏c2.

So, this will be my condition of the merge computation right (𝜏c= 𝜏c1 v 𝜏c2). So, I will just

merge into one and the computation of condition of execution becomes or of these two

conditions and the expression is same. So, the output expression will remain c * d right.

So, this is the first thing I am going to do.

And we found that this is very important otherwise, the complexity of your equivalence

checking will grow and we found many cases this kind of compatible traces, because of

the conditional transformation this kind of thing happens and you can actually find out

the compatible trace and merge them into one right. So, this is the first step I am going to

do,.

But we found several scenarios, where the number of traces did  even not become same

for both the program after merging. For this case, it will become same. There are two

trace here, trace1, trace2. Here, this will be trace1 and this union will be trace2. So, there

are two traces. So, for this case, the number of traces become the same after merging

compatible traces, but in general, the number of the trace may not become same even

after this, because of some complex transformation which stop us from merging this

compatible trace ok.

So, this is actually a useful trick to reduce the complexity, because whatever I am saying,

I have to compare this trace versus trace, but the technique that I am going to propose

here will reduce the complexity. So, here, because 2 and 3 I cannot compare. So, I merge



these two traces into one. Now, 2 into 2 so, I can compare them easily right. So, that will

reduce the complexity of the equivalence checking.
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Next, I am doing a very interesting thing that is finding potential corresponding traces

between two behaviors. So, what I have  told you is that you take a trace here, and there

are say n number of traces here right in this program 2. This is program 1 this is program

2. So, if you have to compare this with this, this with this, this with this, this with this

and this. So, it is basically all n you have to compare right. And I have argued that since

there are n number of traces here, it will be O(n) square complexity that I have already

talked about right.

So, can I reduce this complexity to O(n)? Yes. So, we can do that using a technique

called data driven approach. So, idea is very simple. The idea is that you take a trace here

ok and you identify a input for which this trace will be execute ok. Now, you apply the

same trace to this program right. So, if you give the input to this program, what will

happen; one of the trace will execute right not all of them, because if you give an input

only one of the trace will execute.

So, now suppose, I took this trace and I take a input which actually make sure this trace

will execute. And now, I apply this input to this program and I found that this is the trace

that  is  going  to  execute  for  this  input.  I  will  say  these  two  traces  are  potentially

equivalent right.



So, now, I do not have to compare with all traces. So, I will just take this trace 𝜏1 this

trace  𝜏2 and I will just check whether they are equivalent or not. If I found they are

equivalent, al then I will say yes; they are equivalent if not, there I say  this program may

not be equivalent. So, I am not comparing this with all n rather with an input with the

help of input, I identify directly the corresponding trace ok.

And. So, this O( n )checking is gone. So, the overall complexity will become now,O(n)

not O(n*n) right. So, that is the basic idea of this and we can again use the tool KLEE to

do this. So, with KLEE you can actually set some input and it will give you a trace. And

then with this input, you can actually identify the corresponding trace right. So, we use

the tool and that actually help to reduce the complexity ok. This is the basic idea.
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So, once you have this potential trace right. So, I have trace 1 here, I have trace2 right so,

𝜏1 and 𝜏2. The next problem is that you have to compare these two right. So, these two

trace whether they are equivalent or not. And this comparison we have two arithmetic

expression, we have to compare right. This comparison how can I do.

So, for that we use a tool SMT Solver and with the tool, we use Z3  ok. So, the idea here

is that and this SMT Solver is basically just check the satisfiability formula right. So, the

equivalence problem of this two paths has to be model as a satisfiability formula for a

SMT solver. So, how we can formulate that? 



The  formula  is  that  for  this  𝜏1 we  c𝜏1 which  is  the  condition  of  execution  and  the

condition of execution is c𝜏2 here. And it has O𝜏1, which is the output expression for this,

and for  this  it  is  O𝜏2 right.  These  are  the  things  we have.  Now,  I  have  to  model  a

satisfiability  formula.  So,  there  will  be  a  formula  that  will  be  either  satisfiable  or

unsatisfiable right.

And the way I have to model this equivalence problem of a path into the satisfiability

formula;  is  such  that  when  the  formula  become  UNSAT,  I  will  say  these  two  are

equivalent ok. So, that is the idea. So, how do I going to model it? So, I will say that

c𝜏1 ≡ c𝜏2 and O𝜏1  ≡ O𝜏2. So, if we try to you just give this formula and you ask the tool

you just find a sat right check sat. What it will do? It will basically check this and we

will try to find out an input for which it will this formula is true right.

So, now the problem here,  is  that  it  was just  written  one input  value for which this

formula says it  is  true ok.  So, as a result,  you are not actually  formally proving the

equivalence right. It is just checking for this input this formula is satisfiable or true right.

So, what I am going to do? I will take the negation of this formula ok and I will check

the UNSAT right.

So, I will now, check the sat again. So, what will happen? I try to; so, what does it mean?

It means here, that you find an input for which these two paths are not equivalent right. If

the tool finds an input for which these two paths are not equivalent, then indeed it is

basically they are not equivalent trace right.

But it is if it is written UNSAT, what does it mean? It means it does not find any input

for which this path is not equivalent. What does it mean? It is basically equivalent right.

So, I basically take the negation of the satisfiability problem and ask the tool to identify

your input for which these two path are not equivalent. And since these two paths, if the

paths are equivalent, you will not find any input for which they are actually different

right.

So, it will return. So, this is this formula is UNSAT and the UNSAT of the formula says

these two are traces are equivalent. So, this is how I am going to check the equivalence

of two traces ok using the SMT Solver.
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And I have seen that in some cases, if the one-to-one correspondence cannot be shown,

then what we have to do one-to-many equivalence right and that needs O( n*n)  cross-

checking. But we will say we will only do it for very few traces for which one-to-one

correspondence cannot be proven ok. So, that is the idea of this. So, in the worst case we

have to do this, but this it has to be done for very not for all n right. It will be for some n1

number of things, where n is very less than n ok.
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So, let us now explain the overall algorithm. So, as I said. So, you identify the traces. We

have given two programs; C and RTL-C. You model them as FSMD. You find traces in

both the programs and you also, find the traces and then you merge the compatible traces

also.

So, you reduce the SAT ok. Then, what I am doing is very interesting. This is this one-

to-one correspondence right. So, this is one-to-one checking and this is basically one-to-

many ok.

So, in the one-to-one what I am doing. I will just take a trace of this one program and for

that, I will take a test case, and then I run the other program with this test case to get a

corresponding  trace  the  potential  corresponding  trace.  So,  I  am not.  I  am checking

O(n*n). You see this is O(n) algorithm and this is O( n*n) algorithm there are two for

loops right here only one while loop.

So, I identify a corresponding trace and this is the formula I am just checking right. So,

whether that is equivalent or not. If they are equivalent. So, I will say I the I identify the

equivalence. So, I will just remove these two traces, because for them, equivalence is

already obtained. And if I found that condition is same, but the data transformation is

difficult different the output is different, then I say they are not equivalent.

Because  if  the  condition  same,  these  two  traces  are  basically  must  be  equivalent

otherwise, it is a problem, but I found that output expressions are different. So, I will say

they may not be equivalent. Otherwise, what I will say. This trace 𝜏1 I cannot prove the

equivalence ok. So, for this O( n *n) is needed right.

So, I will just keep that into this copy of t1 right. So, in the copy of t1, I will just remove

all the traces for which equivalence is found. And the trace for which equivalence cannot

be found in O(n) time I will keep them into copy 𝜏0; this traces as I right. So, this will go

on for all tracers.

And for all cases where one-to-one equivalence can be proven, it will be done here right.

If it is not done here, the remaining traces will remain here. And for that, you can see I

am doing a O( n*n) checking and what I am doing here, I will just So, basically what is

going to happen.



So, there is a trace and this is the say the condition space right and there will be multiple

trace here. So, this is the condition for one trace here, and there may be one trace which

will which condition will be this space in the other program. There will be another trace

for  which  the  condition  will  be  this  part  and there  will  be  another  trace  for  which

condition will be this part.

So, these three traces. So, this is a 𝜏1, 𝜏2 and  𝜏3, which will be union of these three will be

equivalent to  𝜏. So,  𝜏 =( 𝜏1  ∪ 𝜏2  ∪ 𝜏3) is the complete condition. So, that is what is

happening here. So, I will take a trace  𝜏0 and I will identify a trace  𝜏1; so that their

condition is non-null; that means, there is some overlap. So, I will identify this part ok.

And then, I will see if their output expressions are equivalent right. So, what I am going

to see. I identify a trace in the other behavior, whose condition is basically a subset of the

trace and I will check if their output is equivalent or not. If they are equivalent, then I

will say it is fine. If not, they will say they may not be equivalent right.

If they are equivalent, I will identify the next one. So, I identify  𝜏2 and I will identify

their sub trace are equivalent, and then, I will again check their output expressions, if

they are the same. I will say they are equivalent move on and then I try to find out the

next trace 𝜏3.

So, this way this inner loop will identify for every trace 𝜏1, it will identify all the traces

which is a subset of this condition of 𝜏1, and since this program is deterministic, so c𝜏 =

(c𝜏1 ∪ c𝜏2 ∪ c 𝜏3)  right, because this is a deterministic program.

So, this way for every trace, I will identify a set of traces in other programs whose union

of them will be equivalent to this trace ok. So, this you remember that again I am not

doing for all traces, because in most of the cases the equivalence will be found here.

Only very corner cases, I have to do this.

So, this is the overall idea right. So, what I have done here, is that this still trace level

equivalence  has  to  be  done,  but  we  try  to  do  several  kinds  of  tricks  to  reduce  the

complexity ok.
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So, let us explain some examples here. So, experimented results. So, these are the test

case we have taken. As you can see here these examples are moderate size; the number

of variables is high and this is the RTL code size and this is the RTL-C. So, it is the

number of lines of code is much higher than the C code and we have also seen that think

seen  in  an  example  right.  Interesting  things  to  be  noticed  here,  that  the  number  of

registers ok.

So, a number of registers here and this is the number of variables. Here, you can see that

this is always less than the number of variables 32 12 43 29 right. So, usually, because of

this the register allocation happened. So, most of the cases is basically the number of

registers. We will try to optimize the number of registers right. So, it is the number of

registers is less than the number of variables.

In some cases it is basically more because this array mapped two registers right. So, there

are two cases; the matrix array and the sum array, where this array becomes. An array is

a  single variable  here that  is  mapped to the register.  So,  that  is  why the number  of

registers more in this scenario otherwise, it is always the same and this is a number of

traces.

You can see in many cases, the number of traces are not equivalent right. So, the number

of  traces  are  not  equivalent  we can  understand that.  So,  this  is  so,  that  is  why this

compatible trace is important and the number of traces are not equivalent here also. So,



then we do the merge compatible  traces.  And after that,  this is a number of trace in

program1 this is the program2.

We can see here that most of the cases the number of traces becomes equivalent except

in one scenario. So, this tells us the usefulness of the merge equivalent trace many cases

the number of traces are not same before you compare merging compatible trace, but

after that they become simple right.

Most interest; one important thing say that there are 120 after traces and there are 128

traces  here.  Then,  tthese128  traces  merge  and  become  8  traces.  So,  merging  is

compatible trace helps to reduce the number of traces also because we found that there

are numbers of traces, where the outputs are equivalent, I can merge them.

So, the complexity also reduces here. So, this is a very interesting and important step that

actually  make  my  problem  or  this  equivalence  checking  problem  scalable  right  or

actually makes it very helpful ok. So, then after that we check. So, we can understand

that. So, out of this I think there are 7 or 8 test cases are there; 7 test cases the number of

traces based come equivalent. In only one case, it is not equivalent.

So, most of the cases in this scenario O(n) will suffice right. Only this case, I have to go

for O(n*n) checking, because the number of tests is not artifice not same. So, this is very

helpful right. So, in most of the cases merge compatible trace reduce the problem into a

such  problem  that  one-to-one  corresponding  checking  can  help  right.  And  we  can

identify that the number of time taken is very less right.

So, most of the cases are within seconds right. So, the only case where you have to go for

n square the time is more; than 1000 seconds right, but still that time is not so high right.

So, this, because in every case we are actually using we call the SMT Solver and that

takes a lot of time, because of that actually check the formula, then it checks the UNSAT

and SAT.

So, it also that this time involves the SMT time as well.  So, we can understand that

including the SMT time also, the time is also very reasonable. And then we identify may

we. Basically, take this example. We introduce certain bugs in the RTL-C and we check

the  non-equivalent  and most  of  the  time  we have  very  quickly  also  prove  the  non-

equivalence right.



So, it shows that if there is a bug our tool can easily detect it right and if there is no bug,

we can show the equivalence ok.
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So,  that  is  all;  so,  just  to  summarize.  In  this  discussion,  we  propose  an  RTL to  C

translation validation framework right for high-level synthesis. So, we have a RTL and

C. We try to propose an equivalence. And to make this particular equivalence checking

framework, there are certain things is very innovative in our flow. 

First of the things is that this extraction of the RTL-C. Unless we have the C, we cannot

just compare. So, this RTL to C conversion is very helpful and very interesting in this

context. So, that only enables this whole problem. And also, we proposed this merging of

compatible traces, which also helps us to reduce the complexity most of the time and is

useful  to  make  the  number  of  traces  equivalent  in  or  equivalent  or  same  in  both

programs. So, that is also very useful.

And then, we also use an approach called data-driven approach. So, which actually help

us to identify the potential equivalent trace between two programs, in order of n time

instead of n square such. So, that also improves efficiency. And finally, the formal you

have proved the for equivalence of two trace formally, using that solver SMT tool right

this is 3. So, this is the overall idea ok.

Thank you.


